SNELL & WILMER LLP S B T B
Alan L. Sullivan (3152) i
Todd M. Shaughnessy (6651) ¥ =< =5 O

15 West South Temple Lot S B o
Gateway Tower West By, w/ < b
Salt Lake City, Utah 84101-1004 et e, S

Telephone: (801) 257-1900 =P BLER
Facsimile: (801) 257-1800

CRAVATH, SWAINE & MOORE LLP
Evan R. Chesler (admitted pro hac vice)
David R. Marriott (7572)

Worldwide Plaza

825 Eighth Avenue

New York, New York 10019
Telephone: (212) 474-1 000

Facsimile: (212) 474-3700

Attorneys for Defendant/C ounterclaim-Plaintiff
TInternational Business Machines Corporation

IN THE UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF UTAH

]

THE SCO GROUP, INC., DECLARATION OF
' RANDALL DAVIS

Plaintiff/Counterclaim-Defendant,

Civil No. 2:03CV-0294 DAK

-against-
Honorable Dale A. Kimball
INTERNATIONAL BUSINESS
MACHINES CORPORATION, Magistrate Judge Brooke C. Wells

Defendant/Counterclaim-Plaintiff.

ORIGINAL

3 INTRODUCTION

L I am a professor of Computer Science at the Massachusetts Institute of
Technology in Cambridge, Massachusetts. Exhibit I provides more details of my technical
background and experience, a list of publications, and a list of cases in which I have testified or
been deposed. I received my undergraduate degree in Physics from Dartmouth College in 1970

and a Ph.D. in Computer Science from Stanford in 1976.

2. I have published some 50 articles on issues related to artificial intelligence and
have served on several editorial boards, including Artificial Intelligence, AI in Engineering, and

the MIT Press series in AL I am a co-author of Knowledge-Based Systems in Al

! In recognition of my research in artificial intelligence, I was selected in 1984 as
one of America’s top 100 scientistsl under the age of 40 by Science Digest. In 1986 I received the
A Award from the Boston Computer Society for contributions to the field. In 1990 I was named
a Founding Fellow of the American Association for Al and in 1995 was elected to a two-year
term as President of the Association. From 1995-1998 1 served on the Scientific Advisory Board

of the U. S. Air Force.

4. In addition to my work with artificial intelligence, I have also been active in the
area of intellectual property and software. Among other things, I have served as a member of the
Advisory Board to the US Congressional Office of Technology Assessment study on software
and intellectual property, published in 1992 as Finding a Balance: Computer Software,
Intellectual Property, and the Challenge of Technological Change. I have published a number of
articles on the topic, including co-authoring an article in the Columbia Law Review in 1994

entitled “A Manifesto Concerning Legal Protection of Computer Programs” and an article in the

Davis Declaration 1

Software Law Journal in 1992 entitled “The Nature of Software and its Consequences for

Establishing and Evaluating Similarity.”

3 From 1998-2000 I served as the chairman of the National Academy of Sciences
study on intellectual property rights and the emerging information infrastructure entitled 7he
Digital Dilemma: Intellectual Property in the Information Age, published by the National

Academy Press in February, 2000.

6. I have been retained as an expert in over thirty cases dealing with alleged
misappropriation of intellectual property, such as the allegations raised in this case, and have
done numerous comparisons of code. I have been retained by plaintiffs who have asked me to

investigate violations of intellectual property, by defendants who have asked me to investigate

allegations made against them, and by both sides to serve as the sole arbiter of a binding

arbitration.

7. In 1990 I served as expert to the Court (Eastern District of NY) in Computer
Associates v. Altai, a software copyright infringement case that articulated the abstraction,
filtration, comparison test for software. 1 have also been retained by the Department of Justice on
its investigation of the INSLAW matter. In 1992 (and later in 1995) my task in that engagement
was to investigate alleged copyright theft and subsequent cover-up by the Federal Bureau of
Investigation, the National Security Agency, the Drug Enforcement Agency, the United States

Customs Service, and the Defense Intelligence Agency.

8. I have been retained by counsel for IBM in this lawsuit and am being

compensated at a rate of $550 per hour.

Davis Declaration 2

II. SUMMARY OF FINDINGS

9. I have been asked by counsel for IBM to evaluate the opinions set out in the
declaration of Chris Sontag submitted in opposition to IBM’s motion for partial summary
judgment of non-infringement of copyright with respect to its Linux activities. Specifically, I
have been asked to address Mr. Sontag’s conclusions concerning what information is
required in order to determine whether there is substantial similarity between Linux and

SCO’s allegedly copyrighted works.

10. My analysis and conclusions are based upon the principles described in Gates
Rubber v. Bando, 9 F.3d 823 (10th Cir. 1993), which I understand to describe the appropriate
methodology for determining substantial similarity and therefore to suggest what information is
required to determine substantial similarity. My analysis and conclusions are also based upon my

experience and expertise in the field of computer science.

11. In summary, I find fundamental errors in Mr. Sontag’s conclusions. He grossly
exaggerates what is required to determine whether there is substantial similarity between Linux
and SCO’s allegedly copyrighted works. In fact, the materials necessary to determine
substantial similarity have been available to SCO for years (at least since it acquired access to the
allegedly copyrighted works in 2001). Tools capable of efficiently evaluating that material have
also been publicly available to SCO for years. The task Mr. Sontag says could take 25,000 man-

years to complete should take capable programmers no more than several months.

12. The first section of this report describes my background and qualifications to

address the issues addressed herein, while the second analyzes Mr. Sontag’s declaration and

Davis Declaration 3

demonstrates the errors in his conclusions concerning the magnitude of the effort required to

determine substantial similarity.

III. ANALYSIS OF THE SONTAG DECLARATION

13. Mr. Sontag correctly concludes that determining substantial similarity requires a
comparison of the Unix and Linux kernels. (9 6-8.) He is incorrect, however, in concluding
that the comparison requires a Herculean effort and that the only way SCO can feasibly
conduct the comparison is if it is provided large quantities of additional information from IBM

and from third parties.

14. As Mr. Sontag states in paragraph 8 of his Declaration: “To show that Linux code
is substantially similar to Unix code requires a comparison of that code” Common sense
supports that statement. Moreover, the Gates Rubber case is clear that determining substantial

similarity requires a comparison of the works under consideration. 9 F.3d at 838-39.

15. Mr. Sontag acknowledges that SCO has access to both Linux and the allegedly
copyrighted works. (19 19-23.) This is of course no surprise, as Linux is publicly available to
everyone, and at least until recently, SCO was itself a distributor of Linux. As the alleged

copyright holder, SCO must have copies of the allegedly copyrighted works.

16. Mr. Sontag goes on, however, to characterize as essentially impossible the
task of comparing Linux to the allegedly copyrighted works, at one point suggesting that
comparing just one version of the Linux kernel to one version of the Unix kernel “coﬁld take
on the order of 25,000 man-years.” (14.) He then proposes a “shortcut” (15): “comparing

similar directory structures of the Unix and Linux operating systems,” and immediately

Davis Declaration 4

indicates that this “shortcut” would still take “about 35 man-years,” and then only if the file

names and the organization of all of the Linux kernel code were identical to the file names

and organization of the Unix kernel code.

17. AsIexplain below, (1) the task of comparing Unix to Linux (for purposes of
determining substantial similarity) is a manageable undertaking that could be accomplished
by capable programmers, with the materials that have been available to SCO for years, in
no more than several months; and (2) the additional materials that Mr. Sontag says are
required so that the comparison will not endure for 25,000 more years are in fact absolutely
unnecessary. The reasons offered by Mr. Sontag to explain why SCO has not been able to

complete the task of determining substantial similarity are untenable.

III.1 Feasibility of the Task

18. As stated, SCO has had, since before the initiation of this case, all the raw
material it needs to find any alleged substantial similarity between Linux and Unix. It of course
has all relevant versions of Unix; it can get any version of the Linux kernel from publicly
available web sites. As one example, www.linuxhg.com contains every version of the Linux
kernel since the original 1.0.0 and a complete history of every change made to every kernel
file over its entire development history. Exhibit II contains a sample listing from that site,
showing the entire development history for the file /£s/inode.c through 1081 kernel

versions.’

! In the on-line listing, each version number is a link to a file showing exactly what changes were made to go
from one version to the next.

Davis Declaration 5

19. There are a number of tools that are publicly available (in both executable and
source code form) to compare large, complex programs for the purpose of determining

substantial similarity. Three common varieties of tools used successfully in a number of cases

like this one include:

J Comparing an exhaustive list of identifiers from both programs. It is a simple
matter technically to assemble a complete list of every “word” in a body of source
code (i.e., every variable name, function name, data structure name, field name,
etc.), even one as large as those in use here. A list is created for each program
and then compared (by the computer) to find words that show up in both lists.
That list of terms in common can then be scanned to find “unusual” words (i.e.,
words not routinely found in code, or in the application in question), and the
places where those unusual words are found in the text then become places to
look for possibly copied code. As this process typically includes the (English)
text contained in comments in the code, it at times even finds places where code
has been changed, but comments left unchanged. As a result, it uncovers

instances of copying that infringers may have thought they had obscured.

J Using tools that do literal or near-literal comparisons (€.g., COMPARATOR [1].
There are a variety of tools available to do this; they can be “tuned” to, for
instance, ignore differences in spacing and layout (an issue raised by Mr.
Sontag (4 11), ignore comments in the code, etc. SCO acknowledges using
such tools, but misrepresents their utility. They are in my opinion quite
effective.

s Using tools that do syntactic comparisons (e.g., SIM [2]). By syntax [mean the
structure of the code, analogous to notions of noun, verb, adjective, etc., in
English. Such tools find code with the same structure, ignoring entirely the actual

names that have been used, and hence can be very effective even where code has
been modified.

20. In an attempt to show that SCO could not possibly compare the works at issue
without more time and information, Mr. Sontag states that existing tools may not detect minor
changes in the code (11), are subject to false positives (9 13) and will require years to

implement unless SCO is afforded more information (9 14-15).

21. First, the existing tools are entirely adequate, even accepting the observation ({
11) that minor changes can prevent an absolutely literal matching process from being effective.

Davis Declaration 6

There are several reasons why the existing tools will do the job. Despite SCO’s implication,
one cannot casually change punctuation, rename variables, change spelling, alter the text
(whatever that means), or insert, delete, or reorder lines of code (f 11). Code is extremely
brittle and thus is in some respects quite similar to a complex and intricately designed
mechanical device, like a finely made wristwatch. One can no more casually change
punctuation, insert, delete, or reorder lines of code than one could casually insert, delete, or

reorder the parts in the watch and still expect it to work.

22. Software development is difficult in large part exactly because the code has to be
just right. In the C language (in which both Unix and Linux are written), for example, a
semicolon means something very different from a comma: substituting one for the other
changes the modified code completely (and very likely breaks it). Similarly, a single equal
sign ‘=" means one thing, but two of them in a row ‘=="mean something entirely different.
Hence even a minor typo can go unnoticed (because it can produce a syntactically valid
program), yet wreak havoc on program behavior. Programmers routinely have the experience
of serious and obscure malfunctions arising out of the simplest typographical mistake, or out of
the well-intentioned act of making a small change to code. Code is sensitive to even slight

alterations; changes are not easy to make.

23, This is one reason why, while it is in principle possible to copy code and
then purposely obscure its origin, that practice is generally carried out on programs at the scale
of freshman homework assignments (where it is more easily detectable than freshmen think), not
sections of multi-million line operating systems. Especially where large, complex programs are
concerned, changes are that much more difficult to make, and purposeful obfuscation on a large

scale is nearly impossible.

Davis Declaration 7

24. Second, while all of these tools are subject to the problem of false positives, 1.e.,
suggesting copying where none exists, with appropriate tuning and use the percentage of false
positives can be kept well within reasonable bounds. Despite SCO’s claims, checking those
false positives need not be labor intensive: programs are easily created to present the alleged
matches in a side-by side fashion on the screen, allowing an experienced programmer to
determine with little more than a glance whether each match is worth further study. An
experienced programmer can quickly scroll through a substantial amount of information to

find any plausible matches.

25. Third, the existing tools could have been employed here in a reasonably short
time period without any additional information. In fact, based on my experience, I estimate that

the task would take experienced programmers a matter of months.

26. Fourth, the existing tools have been designed by experienced programmers who
are aware of the kinds of modifications that can be made to code that may make its origin less
obvious. The tools are capable of dealing with the sorts of things that concern Mr. Sontag (f 11),
such as differences in spacing and layout, variations in uppercase vs. lowercase, and
comments in the code. The tools thus do both literal and non-literal matching, and are not
misled by a variety of changes. There are also tools like SIM, noted above, that match
based on syntax and hence are not misled by such things as renaming a variable, changing

spelling, etc. (Y 11). The existing tools are thus fully capable of doing the job. Given the

Davis Declaration 8

claimed volume of the alleged copying, finding any copying that exists should not be a

difficult task.’

27. Mr. Sontag poses the problem as if no results will be known until the entire
comparison task is complete. Even if the entire task were daunting (which it is not), if “much” of
SCO’s 3.5 million lines of code were copied (1 47), this would imply that there must be
thousands of examples waiting to be found, and hundreds able to be found after a modest amount
of effort. Mr. Sontag’s own declaration acknowledges that SCO has used one or more of the
existing tools to do the requisite comparisons (1 18, 21-23), but SCO has yet to present any

credible examples of substantial similarity.

28. It would appear, in fact, that SCO completed months ago some of the very
comparisons that Mr. Sontag says might take 25,000 man years. For example, on June 10, 2003,
a SCO representative stated that it “was able to uncover the alleged violations by hiring three
teams of experts, including a group from the MIT math department, to analyze the Linux and
Unix source code for similarities” and that “‘[a]ll three found several instances where our Unix
source code had been found in Linux’”. (Robert McMillan (quoting SCO), “SCO shows Linux

code to analysts,” IDG News Service, June 10, 2003.)

[I.2 No Additional Information Is Required

29. Having concluded (incorrectly, I believe) that it is impossible as a practical

matter to determine whether there is substantial similarity in the Unix and Linux kernels,

2 For example, Mr. Sontag claims that “gCO believes that much of its copyrighted code was copied from AIX and
Dynix into Linux.” (f47.)

Davis Declaration 9

Mr. Sontag states that the only way for SCO to determine substantial similarity is to get a vast
amount of additional materials from IBM and a number of other individuals or entities. In fact,

none of this additional material identified by Mr. Sontag is necessary to the substantial similarity

task.
I11.2.1 No Additional Information from IBM Is Needed

30. Mr. Sontag states ({43, 50) that SCO requires the following additional materials

from IBM:

o all version control system and bug tracking information (including documents,
data, logs, files and so forth) for ATX, Dynix/ptx, ptx, and Dynix from 1984 to the
present,

. source code and log information for all interim and released versions of AIX,

Dynix, ptx and Dynix/ptx from 1984 to the present,

- depositions as appropriate for programmers identified from the foregoing,

o all design documents, white papers, and programming notes, created from 1984 to
the present.

31. This information is irrelevant to SCO’s task in the current context, which is

showing that IBM’s Linux activities infringe SCO’s alleged copyrights in Unix software. The
similarity to be demonstrated is between the claimed Unix software and Linux; the history

of AIX and Dynix development plays no part in this judgment.

32. Having access to all of the materials concerning AIX and Dynix to which Mr.
Sontag refers in his declaration (which appears to be a huge amount of information) would not,
in my opinion, be of any assistance in determining whether Linux is substantially similar to Unix.

Those materials are not useful for the task at hand.

Davis Declaration 10

33, As I understand the concept, and as is only logical, substantial similarity must be a
determination about two bodies of code as they are, not a question of their heritage. Any given
segment of Linux code either is or is not substantially similar to a given body of Unix code; it is
irrelevant to the determination of similarity how the Linux code came to look the way it does.

So even if it is true that some code that came to be included in Linux originated in AIX or Dynix,

that is simply not important to the analysis of whether that Linux code is in fact similar to any

Unix code.

34, To suggest otherwise leads to the absurd notion that one work can be considered
similar to another even if the two are currently completely different, if only one can show a
(perhaps very long) sequence of small changes that lead from one to the other. This would be
like playing the game of “telephone,” in which a sentence is successively whispered from one
person to the next in a long line, and claiming that, even though the sentence that emerged
was totally different from the one that started the process, they were “substantially similar”
because the last was the result of many small changes to the first. Similarity means just that
— similarity. And the determination of similarity is made on the code as it is, independent

of how it got that way.

35 Yet this is not what Mr. Sontag apparently has in mind, as he claims that “By
viewing each version of the Dynix/AIX code, SCO will be better able to determine if the
structure, sequence, and organization of the corresponding Linux code matches that of Unix.”
(4 35.) The structure, sequence and organization of some Linux code either does or does not
match that of some part of Unix code; that judgment is surely not dependent on the derivation

history of the code. Again, information relating to AIX and Dynix, let alone extremely

Davis Declaration 11

detailed information about AIX and Dynix, is not useful to the analysis of whether portions of

Linux are substantially similar to portions of Unix.

36. Consider also Mr. Sontag’s indication (f 30) that “Because of changes made to
source code over time, the current code version may ‘look’ different than the initial code
version.” He slides too quickly here past the possibility that, because of changes to source
code over time, the current code version may in fact be different, i.e., no longer substantially
similar. The changes made to correct bugs, improve features, add new features, or as a
consequence of re-thinking the design of a section of the code, may over time simply produce

code that is completely different from the original.

37. Note also that the claim of the utility of intermediate versions and change logs
skips blithely past a central point: in order to find any places where Unix code might have been
copied into AIX or Dynix, SCO will have to compare all of its Unix code against all of the AIX
or Dynix code. How else will it find all the similarities? But it is worse than that: SCO will
have to compare all of its Unix code against every version of the AIX or Dynix code; after all,
Mr. Sontag has noted (Y 48) that “IBM could have copied System V code into any number of

the multiple versions of AIX and Dynix.”

38. Here the basic contradiction in SCO’s request becomes particularly clear. Mr.
Sontag spends substantial space in his declaration suggesting that the task of comparing one
version of Linux against one version of Unix is impossibly large. Given the IBM materials I
understand SCO already has in hand — notably the many versions of Dynix and AIX that I
understand IBM has produced — the task SCO proposes is many, many times larger than

the one it claims is far too difficult. And yet SCO requests, among other things, “source

Davis Declaration 12

code and log information for all interim and released versions of AIX, Dynix, ptx and Dynix/ptx
from 1984 to the present,” and “[a]ll design documents, white papers, and programming
notes, created from 1984 to the present.” (f 50.) If the original task of finding substantial
similarity in one version is pragmatically impossible, what are we to make of a task many
times larger, and one that is perhaps many, many times larger again than that? SCO seems in
one breath to claim the task is too large and with the next claim that the task would become
feasible if only it had a volume of information perhaps many, many times larger than what it

already possesses.

39. It is estimated that the additional AIX and Dynix source code that SCO seeks
exceeds 2 billion lines of code. Based upon the estimates Mr. Sontag used to arrive at his
25,000 man-years calculation, it would take SCO more than 14 million man-years to review
just the additional AIX and Dynix code that SCO says it needs, putting aside how many more

man-years it would require SCO to review the other materials it says it needs.’

3 Mr. Sontag (f 14) states that comparing the 4 million lines of code in the Linux 2.4 kernel with the 3.4 million
lines of code in SCO’s Unix System V 4.2 MP kernel would require the comparison of 66,000 x 58,000 pages
(assuming about 60 lines of code per page), and that a “initial” review of the code, assuming that each page
comparison takes one minute, could take 25,000 man-years to complete. (66,000 x 58,000 equals 3,828,000,000
minutes, or 63,800,000 hours—SCO’s calculation of 25,000 man-years thus implies a man-year of approximately
2,552 hours.) The approximately 2 billion lines of additional AIX and Dynix code would result in approximately
33,333,333 (again, using SCO’s assumption of 60 lines of code per page) pages of code. SCO’s suggested method
of comparing code would thus require 66,000 x 33,333,333 = 2,199,999,978,000 minutes, or 36,666,666,300 hours,
or 14,367,815 man-years to complete.

Davis Declaration . 13

111.2.2.No Additional Information From Others Is Needed

40. As voluminous as the list of materials SCO seeks from IBM is, it is dwarfed by

the request for additional information from other parties (f 57):

. “Determine what third parties IBM has partnered with to develop Linux and what
work those groups have done . . . particularly as to the details of the partnering,
such as which party makes what contribution, the motivation for the
contribution, and the starting and ending code versions that resulted from the
partnership. . . .”

. “Take discovery on Linus Torvalds, the purported creator of Linux, about the
contributors and contributions to Linux since its inception, and the
maintenance of any records about the development history of Linux.

Mr. Torvalds is expected to have detailed records of these contributors and
their contributions, material that is not publicly available. Further, Mr. Torvalds
can answer specific questions as to what each contributor intended, and where
and how the contributor acquired or developed the derived code.”

J “Take discovery on the maintainers of the kernels. . . .”

. “There are many contributors to the kernels, some of who [sic] have
significant contributions to Linux code over the years. Some of these individuals,
whose names are publicly available, should be deposed to find out their sources
for their contributed code.”

o “Many corporations have made contributions to Linux, and SCO needs to take
their discovery on certain of these companies to determine the sources of their
contributions. Also, SCO needs to depose the programmers who work for
these companies and made the contributions to determine the sources of those
programmers’ code contributions....”

° “gCO has identified some, but not all, independent authors of various portions of
the Linux code. ... Those authors should know the sources of their code and
should be able to provide information as to whether the code they contributed to
Linux was obtained from SCO copyrighted code.”

. “Several private groups also made major contributions to Linux, so SCO should
also be permitted adequate time to identify and take discovery from these
entities.”

. “Many organizations exist whose purpose is to track and report on changes to
Linux... SCO needs access to the more detailed information these organizations
maintain. . . .”

Davis Declaration 14

. I icensees and former licensees of Unix source code to see if these entities, their
employees, or former employees are contributing Unix code to Linux.”

41. This list, too, is striking, for a number of reasons. First, while the information
requested from IBM would make SCO’s task many times larger than it is, the request for this
third-party information would surely magnify SCO’s task still more. Consider, for example,
just the last item, requesting materials from “Licensees and former licensees of Unix source
code to see if these entities, their employees, or former employees are contributing Unix code to

Linux.” (] 57.)

42. Second, Mr. Sontag provides vanishingly little rationale for this voluminous
request, which is not surprising, as the requested information is irrelevant to the task at hand.
Once again, the task at hand is finding substantial similarity between Unix and Linux as it is
now. Gathering information regarding the entire development history of Linux, including
from potentially hundreds or even thousands of individuals, would not merely require a
considerable amount of time, it would be of little or no meaningful assistance. The notion, for
example, that “Mr. Torvalds can answer specific questions as to what each contributor
intended, and where and how the contributor acquired or developed the derived code,”
suggests a wholly unrealistic picture of any mortal and of the code development process. The
task would be done far faster, and the time better spent, if SCO were simply to put even part
of the effort imagined by Mr. Sontag to the task of comparing the Unix and Linux source code

SCO already has.

43. Finally, the vast bulk of the information Mr. Sontag lists — and far more
information than is necessary to determine substantial similarity — has long been accessible

to SCO. Table 1 below lists a collection of web sites with archives of Linux code, mailing lists

Davis Declaration 15

maintained by ke

rnel authors (indexed by contributor), etc., that covers much of what has been

requested and certainly more than SCO could possible need.

e www.linuxhg.org is an enormous collection of historical material, including a

list of anyone who contributed code to the Linux project back to February
1996, indicating the general area they were involved in.

e www.linuxhg.com has every patch or other contribution to the code over the

entire development history. See Exhibit II for one example.

e http://www.tux.org/lkml/, the Linux kernel mailing list. which includes pointers

to a variety of other useful sources

o http://www.uwsg.indiana.edu/hvpermail/linux/kernel/ , which has a search by

word/subject capability.

° http://marc.theaimsgroup.com/‘?l=1inux-kernel, which keeps a collection of

Linux-related list archives.

e http://groups.google.com/ groups?h1=en&q=fa.linux.kemel&meta=, which is

the Google interface to the fa.linux.kernel newsgroup

e http:// gossamer-threads.com/lists/linux/kernel/, which has an easy-to-use

interface for searching the large accumulation of messages

e http://www.kemeltraffic.org/ provides a weekly summary of the discussions

about the Linux kernel and archives previous summaries.

Table 1: List of Readily Available Sources of Information on Linux

Davis Declaration 16

Y. SUMMARY

44. Mr. Sontag grossly exaggerates what is required to determine whether there is
substantial similarity between Linux and SCO’s allegedly copyrighted works. The materials
necessary to the task have been available to SCO for years and tools capable of evaluating that

material in a matter of months have also been available to SCO for years.

45. 1 declare under penalty of perjury that the foregoing is true and correct.

PSRN

Randall Davis

Date: 23 August 2004

Place: Weston, Massachusetts

Davis Declaration 17

VI. REFERENCES AND MATERIALS CONSIDERED

References

[1] Eric S. Raymond, Resource page for COMPARATOR 2.0.
http://www.catb.org/~esr/comparator/

[2] Dick Grune, The software and text similarity tester SIM.
http://www.cs.vu.n1/~dick/sim.html

Materials Considered

Computer Associates v. Altai, 982 F.2d 693 (2d Cir. 1992)

Gates Rubber, Inc., v. Bando American, Inc., 9 F.3d 823 (10th Cir. 1993)
Mitel, Inc. v. Igtel, Inc. 124 F.3d 1366 (10th Cir. 1997)

References listed above

Web sites listed in Table 1 above

Declaration of Chris Sontag in Support of SCO’s Opposition to IBM’s Motion for Partial

Summary Judgment, undated

Davis Declaration

18

