Did You Say CMVC?

Document Number GG24-4178-00

September 1994

International Technical Support Organization
San Jose Center



Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xv.

First Edition (September 1994)

This edition applies to Version 2, Release 1, Modification Level 0, of IBM Configuration Management and Version
Control/6000, Program Number 5765-207, for use with the AIX Operating System 3.2

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An 1TSO Technical Bulletin Evaluation Form for reader’s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 471 Building 70B

5600 Cottle Road

San Jose, California 95193-0001

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with |IBM Corp.



Abstract

This document describes the use of the IBM Configuration Management and
Version Control (CMVC) product in the scope of the downsizing of a DATABASE
2 business application from an IBM mainframe running MVS tec the RISC
System/6000 and AIX/6000.

The book gives you a general view of the CMVC features and an understanding
of how CMVC can be used to improve quality and increase productivity.

This document was written for customers and system engineers who need to
know how to set up, configure, customize, and use IBM CMVC for UNIX in the
scope of a given application development.

AD AX (245 pages)

© Copyright IBM Corp. 1994 iii



Chapter 1. Software Configuration Management and Change
Management Overview

The elements produced during the development of an application are created
progressively, as new requirements are discovered and old ones are refined.
You can easily forget why and when an individual element was created. You can
have the latest application development tools, a highly skilled and weli-managed
development organization, and be foliowing a superior development
methodology, but still find that your “as-built" application does not work as it
was designed, coded, tested, or documented.

It is possible that the application, which worked so well in testing, cannot be
successfully re-created for delivery simply because some fixes to the code were
not integrated in the final build of the application. It is also likely that some
unauthorized fixes managed to find their way into the application, creating a
mismatch in interfaces, calls to nonexistent subroutines, or inappropriate access
to data, which no one can seem to explain. Problems of this sort represent
failures in software configuration management (SCM) and change management.

Having all the right parts does not ensure a successful outcome in software
development, as shown in Figure 1. It takes SCM to ensure that all the right
parts are put together in the right manner, and it takes change management to
ensure that any changes to those parts or their relationships are well thought
out and deliberately applied.

It is not enough to have:

excellent organization

a broken-In process

all necessary resources

a wonderful set of
development tools

to ensure you will produce a good system

Figure 1. Why SCM and Change Management Are Necessary

In this chapter, we briefly describe the objectives and benefits associated with
the processes known as SCM and change management. We also discuss the
relationships among these processes, and other processes, such as project
management. We also look at the relationship among these processes and
software development methodologies.

© Copyright IBM Corp. 1994 1




1.1 Obijectives

The main purpose of both SCM and change management is to ensure
consistency of the elements comprising the application, as well as between the
application and the documentation, which defines and supports it. The
documentation that defines an application includes:

- Requirements specifications
+ Intertace specifications
. Design data, engineering drawings, and design specifications.

The documentation that supports an application includes various end-user
manuals and separately cataloged help information.

Another very important function is to precisely identify an application’s
significant development “baselines.” These baselines are usually associated
with a major project milestone event. Typical baselines include:

. Requirements analysis and specification

- Approved design documentation

. Evaluation prototype (alpha release)

. First integration test release (beta release)
. First end-user release (first customer ship)
- Site-specific or platform-specific releases.

tdentifying all the changes to a given baseline, and ensuring that they are
incorporated into the next, newly forming baseline in an orderly and controlled
manner is the core responsibility of change management. Change management
identifies and tracks problems as well as suggested enhancements to an
application. This ensures each change is carefully evaluated, and—if approved—
correctly implemented and incorporated into the application.

1.2 Benefits

2

CMVC Live

SCM and change management are put into place to prevent or cure problems
that contribute to high development and maintenance costs, missed schedules,
and customer dissatisfaction. You reap many benefits when you can
successfully apply SCM and change management to software development
efforts.

The primary benefit of SCM ensures that you can define and identify all elements
comprising your application. It also ensures that you know exactly in which
manner they are generated, preprocessed, compiled, linked or otherwise
combined to form specific releases of your application and related
documentation. SCM ensures that you keep a historical record of these release
configurations along with the exact versions of all the components and the
application itself at each release. This means that you can re-create exactly any
previous release of your application, which exhibits a failing characteristic
reported by end users.

SCM ensures that you can generate different parallel releases of the same
application, because you know exactly which elements are unique to each
version and which are common. You have a complete history of every version of
every source or data file comprising your application, and you also have the
ability to have parailel versions of one file incorporated in multiple releases.
Release management, which is an element of SCM, ensures that you can



1.4 Automated Support for SCM and Change Management

While procedures and practices to implement SCM and change management can
be manua!, and in fact were for many years, they lend themselves particularly
well to automation. As application development became increasingly complex, it
became not only more convenient, but absolutely necessary to automate most of
the tasks and procedures supporting SCM and change management. When it
became possible for SCM and change management tools to take advantage of
relational database technology, data about the configuration objects and change
reports could be accumulated and accessed in a variety of ways beyond that
necessary merely for SCM and change management purposes if the SCM tools.

When IBM undertook to develop its own UNIX-based operating system, AlX, it
discovered it needed a UNIX-based industrial strength SCM and change
management system that could support thousands of users, hundreds of
Gigabytes of project data, and tens of thousands of report queries daily. |BM
needed a product which supported its development methodology, met its QA
requirements, and was compatible with its development environment. 1BM
needed reliability, flexibility, and performance. No one SCM product at that time
included all the features, which IBM knew it required for AIX development. Many
provided version controi or release management, but none integrated automated
change management with automated SCM

IBM, therefore, deveioped its own SCM and change management tool on AlX.
This tool, developed for internal use, was called Orbit. After Orbit had been
successfully used to bring out several releases of AlX, IBM realized that other
software engineering and business application developers could also benefit
from a tool with Orbit’s capabilities. So, they developed a commercial SCM and
change management tool from Orbit and named it Configuration Management
Version Control (CMVC).

1.4.1 Configuration Management Version Control

8

CMVC Live

This section gives a brief overview of the features and functions of CMVC.

CMVC is a client-server application. CMVC products execute on the HP-UX**
from Hewlett-Packard** (HP**), on SunOS** and Solaris** from Sun** and on
AIX/6000. Client portions of these products interoperate with any server portion.
There are a command-line client, a stand-alone graphical client, and graphical
client, which can be integrated into the IBM Software Development Environment
(SDE) WorkBench/6000 or the HP SoftBench** environment. The CMVC server
accesses data stored on its host’s file system and data stored in a relational
database, managed by DATABASE 2/6000 (DB2/6000%), ORACLE**, INFORMIX**,
or SYBASE** products. CMVC provides a wide range of functions.

1.4.1.1 Configuration Management

CMVC provides mechanisms for identifying, monitoring, and managing changes
made to a software baseline. The baseline may contain any type of data,
including: documentation, design and specification data, and build and compile
control information, as well as the source code itself. Files managed may
contain text or binary data. CMVC supports files containing these types of data
by associating them with CMVC “components.” Components may be organized



into a component hierarchy to reflect the application’s design, responsibilities in
the development organization, or other relevant schema. Components are
owned and manipulated by CMVC user IDs which are mapped to operating
system user 1Ds, on specific network hosts.

1.4.1.2 Version Control

Version control is provided by standard UNIX Source Code Control System
(SCCS), or by PVCS Version Manager**, a product available from INTERSOLV,
Inc. Version control ensures that any given version of a file from the present
back to its initial version can be identified and retrieved, and that the differences
between any two versions can be readily identified. Version control in CMVC
applies to both ASCIl and binary data tiles.

1.4.1.3 File Change Contro! and History

CMVC ensures that an audit trail is maintained for every file by identifying for
any file change: when the change occurred, who was responsible, and why the
file was modified. If problem tracking is in place, CMVC ensures that all file
changes identify the authorizing defect or feature, and that no file changes are
allowed without such authorization.

1.4.1.4 Integrated Problem Tracking

Problem tracking, both for feature and defect changes is provided by CMVC.
Features and defects are associated with a CMVC component. In addition to
describing the enhancement proposed or problem encountered, they identify the
specific versions of all controlled files, which implement the feature or defect.
Problem tracking implements a configurable process. This means that defects
and feature processing can be omitted. If they are used, defect and feature
processing can go through a series of states, some of which are optional.
Defects and features can be opened, cancelled, returned, or implemented after
an optional design, size, and review subprocess is conducted. There is also an
optional verity subprocess to verify that the changes were satisfactorily
incorporated in a formal release.

1.4.1.5 Release Management

CMVC supports the concept of a “track,” which is a mechanism to relate an
individual defect or feature with the set of file changes that implement that defect
or feature in a given “release” or “level of a release” of an application. Use of
tracks is also a configurable process; tracks processing is optional, and if used,
has optional subprocesses for approval, fix, and test. if used, tracks go through
a series of states which include: approve, fix, integrate, commit, test, and
complete.

Releases and levels are CMVC mechanisms for defining interim baselines of the
application. CMVC records the exact version of every file comprising the
release, including build instructions, and can extract those files into build
directories. Release management is a configurable process which can include
or omit the track process, and if the track process is employed, an optional level
subprocess. A level is a group of changes that are incorporated into a release
in a sequential and carefully monitored manner. A level is first in a working
state, then tested in an integrated build committed when satisfactorily tested and
marked as complete when all changes identified for that level have been
successfully incorporated into the release.

Chapter 1. Software Configuration Management and Change Management Overview 9



10

CMVC Live

1.4.1.6 Access Control

Components provide a mechanism by which CMVC controls access to files under
its control. Access of a variety of sorts can be defined for all files associated
with a given component. CMVC user IDs implicitly acquire some access
authority for components by virtue of owning them, and may inherit other access
authority from parent components. They can explicitly grant or deny access
authority over components which they own to other CMVC user 1Ds.

1.4.1.7 Automatic Notification

CMVC provides for automatic notification of CMVC actions affecting particular
components and their files to “interested” users. Notification is provided by
electronic mail, so a user does not have to start up CMVC to be aware of the
CMVC actions. A CMVC user 1D’s “interest” in being notified of CMVC actions
can be specified in terms of specific CMVC actions and affected components.

1.4.1.8 Customization

CMVC allows additional fields to be added to the database records that
implement CMVC features, defects, files, and users. These new fields are
reflected by appropriate changes to CMVC windows, reports, and command-line
parameters.

CMVC also enables configuration of the processes that manage CMVC objects,
such as files, features, and releases. Configuring these processes determines
the various states through which these objects can pass.

CMVGC allows you to define “user exits” that automatically execute a UNIX shell
command file, or user-written executable program whenever specific CMVC
commands are executed. You are allowed to select parameter data, related to
the CMVC action and object it is affecting, to be passed by the CMVC command
to your the shell command file or program. You can also determine if the user
exit is triggered before or after the CMVC command executes.



Chapter 4. Planning for CMVC

In this chapter we offer some general advice on planning to use CMVC, as well
as offer some examples of how to apply specific features or functions in CMVC.
We also show how a small application development project, described in
Chapter 3, “Overview of the Application Development Project” on page 41 and
alluded to in Chapter 2, “Discovering CMVC: An New Application Project Is
Introduced to CMVC" on page 11, planned for its use of CMVC.

4.1 Why Plan?

The most important thing to understand about CMVC is that you do not need to
understand alt of it, before you begin using some of it. CMVC is broad in its
function, thorough in its implementation, and very flexible. CMVC provides many
mechanisms to help you accomplish your SCM goals, but it does not dictate
exactly how you should use them, nor does it require that you use them all if you
use only some of them. This is one of the distinguishing advantages of CMVC.
Because no two development efforts have exactly the same number of
requirements, the same degree of complexity, scope of effort, or the same
hardware and software resources, how they approach SCM with CMVC varies
significantly. Recognizing this, CMVC was designed to be set up, tailored, and
utilized according to the needs of the individual project. Therefore, it is wise to
plan in advance which features of CMVC you want to use initially, how you want
to apply them to your SCM problems, and which features you want to phase in
gradually.

The first step in this planning process is to go over the CMVC product
documentation carefully. These documents identify and define CMVC objects,
such as Files, Releases, and Users, and describe how CMVC users access and
manipulate them. In /IBM CMVC Concepts, you find a description of CMVC
concepts, objects, processes, and interactions. Look in IBM CMVC User's Guide
and /IBM CMVC Commands Reference for details on how to use individual
commands and GUI windows. IBM CMVC User's Reference provides a place to
look up lists of options, record structures, and field attributes.

However, what you will not find in these documents is the correct interpretation
of how to map CMVC objects to the real objects of your application development
effort. Nor will you find advice on which circumstances call for using or not using
a given CMVC object or function. This is because there is no single correct
application of CMVC; this will vary with your circumstances.

The second step in planning, therefore, is to compare your thoughts of how to
apply CMVC to someone else’s actual experience. Since not everyone can do
this, we have written this chapter. It provides a practical example of how to plan
for and apply CMVC objects, concepts, and processes to meet the needs of an
actual software development project. This chapter also suggests alternative
approaches to CMVC that were not used on this project, but are based on other
experiences with CMVC.

SCM is not a short term effort, nor does it exist in isolation. SCM responsibilities
for an application begin during its development and continue as long as it is in
use. The SCM effort on an individual application development project is also
part of a larger SCM effort in the development organization. Therefore, original

© Copyright IBM Corp. 1994 65



plans for CMVC are subject to revision as the needs of the project change and
as additional projects start up. Your use of CMVC will also evolve as you
become more familiar with its capabilities. Generally speaking, CMVC is
amenable to this fact of life. But, some decisions about CMVC that you make at
the beginning of a project, have a long term impact. This book helps you
distinguish between these and other decisions, which you can make tentatively
now and the plan to modify as time passes.

CMVC provides a command-line interface client, as well as a GUI client. Rather
than refer to specific command and parameter names, and equivalent GUI
window and menu items in this chapter, we refer to CMVC actions by a generic
name. For example, we refer to the FileCreate CMVC action, when we mean
either the File -create command, or the Create selection on the Actions pull-down
of the CMVC - Files window. You should refer to the manuals to identify the
actual correct speliling of the command and parameter, or window and menu
item names.

4.2 Pre-Installation Planning for CMVC

Before you instal CMVC, you should:

« Plan your network license requirements and distribution of licenses over
your hosts

- Plan your distribution of CMVC client and server software across your hosts

- ldentify and define the purposes served by your CMVC families.

4.2.1 Planning Network License Requirements

66

CMVC Live

CMVC makes use of Network Licensing System** (NetLS**). For details on how
NetLS works and how CMVC makes use of the NetlLS licensing mechanism refer
to 6.2, “NetLS Installation and Initialization” on page 163. There are some
decisions you must make regarding NetlLS; they are primarily questions of
network and system administration. These include whether to have more than
one NetlLS license server, and how to distribute license tokens for various
licensed programs among them. The primary decision you must make regarding
CMVC and NetLS, however, is how many CMVC license tokens your project will
require.

4.2.1.1 What to Consider in Planning Network License
Requirements

To plan your CMVC license token requirements, try to determine the maximum
number of users who will be using CMVC at any one time. Someone performing
SCM functions may need access all day long, while your developers may use
CMVC infrequently. Not all developers will use CMVC to the same degree; it
may depend upon their specialized role in your project. The project and team
leaders may use CMVC a few times daily, while testers and build integrators
may use it constantly.

Before a CMVC client issues a request to the server, it requests a license, or a
token. After getting it, that CMVC client holds it a minimum of fifteen minutes.
(This is CMVC’s default minimum expiration time). If, in the next fifteen minutes,
that client issues another request to the CMVC server, that token’s expiration
time is extended again by fifteen minutes. So, if you bring the CMVC client GUI
up, make and refresh queries, display new windows, and perform CMVC actions
every few minutes all day long, you will effectively use one token for most of that



