EXHIBIT C

US006704032B1

a2 United States Patent

Falcon et al.

(10) Patent No.:
5) Date of Patent:

US 6,704,032 Bl
Mar. 9, 2004

(54

(75)

(73)

*)

@D
(22
(D
(52)
(58)

(56)

5673401 A *

5,687,331 A * 11/1997 Volk et al.

—

METHODS AND ARRANGEMENTS FOR
INTERACTING WITH CONTROLLABLE
OBJECTS WITHIN A GRAPHICAL USER
INTERFACE ENVIRONMENT USING
VARIOUS INPUT MECHANISMS

Inventors: Stephen R. Falcon, Woodinville, WA
(US); Richard St. Clair Bailey,
Bellevue, WA (US); Dan Banay,
Seattle, WA (US)

Assignee: Microsoft Corporation, Redmond, WA

(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 377 days.

Appl. No.:

Filed:

Int. C1.”
U.S. CL
Field of Search

09/699,898
Oct. 27, 2000

.. GOGF 13/00
.. 345/746; 345/765
345/746, 765,
345/767, 802, 822, 821; 701/2

References Cited
U.S. PATENT DOCUMENTS

.................. 725/139
.................. 345/840

9/1997 Volk et al.

412

412'

\

\@@

414(a)

5,821,935 A * 10/1998 Hartman et al. 345/839
6,201,540 B1 * 3/2001 Gallup et al. 345/764

* cited by examiner

Primary Examiner—Cao (Kevin) Nguyen
(74) Antorney, Agent, or Firm—Lee & Hayes, PLLC

(7) ABSTRACT

Improved methods and arrangements provide user interface
platforms that are capable of meeting the unique require-
ments of manufacturers, while also advantageously support-
ing the development of independently designed software
applications. In accordance with certain aspects of the
present invention, methods and arrangements are provided
whereby certain key events are defined and operatively
associated with the hardware suite. These key events, which
are essentially virtual events, can be invoked or otherwise
implemented by the manufacturers and independent soft-
ware vendor (ISV) applications. These key events are cat-
egorized as being either determinate events or indeterminate
events, and their functionality can be based on different
behavior models. The behavior models consider the notion
that the user interface will most likely include various
focusing (e.g., function selection) and/or editing (e.g.,
parameter modifying) capabilities. As such, the methods and
arrangements can support several different behavior models,
including, for example, a full-focus mode, a focus-free
mode, and an edit-free mode.

41 Claims, 8 Drawing Sheets

/44 /416
/—4 : /416’

U.S. Patent Mar. 9, 2004 Sheet 1 of 8 US 6,704,032 B1

100“\/
106‘\ 102W 1081

Operating Logic

Input Mechanism > —p| Program Logic

_/—— Events

104 l

110 —
Display

0 W /— 402

Bezel 7/
Input Mech. 408
. A
410~ 106 Form Object P
0o o
Display //

US 6,704,032 Bl

Sheet 2 of 8

Mar. 9, 2004

U.S. Patent

SIVYY90Yd . @_
NOILYOI1ddY N ! H_
! V9 gz
I
_ ﬁ e >mv; viva SIINAOW | SWVHOOHd | WILSAS
oo Loz ez WYHO0Hd | INVHOO0Nd [NOILYOITddV[ONILYHIHO
752N poz ~ 62z | ~8eC ~ 6T “oez " Neez
¥3LNdWOD WO cre & @ -
ETTONER \ Jzz -7
t | 0€Z 82z «I \ _ -
6¥2 _.||1I|I||I|u;|||/. — |\||||II||_
— =/
_ _ | _ _ | g Iva
_ Wvaoodd Wlge,
JOV4HTUINI | | IovauaLNI || Iov4uaLINI || FoVANALNI
JOV4H3IN 1¥0d EVIle AAINa NSIa 3AINA L SN _
162 AHOMLAN IvIY3s TvOILdO DOILIANOVYIN MSIa QyvH N— €2
_SN\ ore \D ¥€2 7 j gez” 3 2ce’ D SWVH90Yd |
NOILYOIlddY N
SNd WILSAS 062
— C c mmw\. q q NJLSAS | _
_ ONILVH3dO N—GEZ
y3ldvay 1INN YA dS = VY _
|
| o3ain FOVAHIINI | 5\ 155300ud ._.
_ ; . soig]
_mvm\ T4 2z’ 9¢ce
—_ - — |.|.||I|_ vez-+ WO _
wisiueyosiy , AMOWIN WLSAS
jdup L zzet——————— 5

114

U.S. Patent Mar. 9, 2004 Sheet 3 of 8 US 6,704,032 B1

/416

/416’

420

\ 426 \

422 \{ }) /_ 424
C]
424 — 422 X
- 428

[] i /— B

) (

.Q.(J

.
‘/4—20(b) ‘/425(c) —/ B

420(a)

Fig. 5

U.S. Patent Mar. 9, 2004 Sheet 4 of 8 US 6,704,032 B1

—420() ,— 420(b) : / 4260)
l |
() [) a 110110 - hu
L |
| i . \¥
(d«) (6{) 426(b)
L 420(a) o 420(b) 442~ /~ 426(a)
| —-— = i Sl e
:440—\H B 7L-i n / 440ﬂ\:l<_]t’l:
|
| — 10 I - I
: :[J : () 110 \ Lo - — —_——— -
A | (]
442 B_ | | , ,
-
(¢) (e) —*°¢
/— 420(a) / 420(b) /— 426(a)
E— —7
B / : B ﬂgr 440 | '
| | -
CO v i r™ |
L 110\ : — |
: :—,_ e MO X
] LU S Sy
() =T T
¢ Fig. 6 §

U.S. Patent Mar. 9, 2004 Sheet 5 of 8 US 6,704,032 B1

Yy 420 Yy 426

1/

442 —

1m0~ L)

U.S. Patent Mar. 9, 2004 Sheet 6 of 8 US 6,704,032 B1

420 /426
+ B
;[) | : | }_ 110
$_
N

L442
/_420 (é) /_426
[J R /)’_110
| - 450
\L

U.S. Patent Mar. 9, 2004 Sheet 7 of 8 US 6,704,032 B1

- 420(a)
—F
*

| |
| |
I |
1 (],
I |
! |
|

I I

/— 428

)ooo[) e

L
U

. 420(b) (a)
/— 428

Jooo() o1

E::::;_:
U\

|
r“/1L

)‘_110

l]
) S
- ——— |
/ll/ I|
|
./
U
L
L
)
| 1 8
o 4]
e/

U.S. Patent Mar. 9, 2004 Sheet 8 of 8 US 6,704,032 B1

r‘ 460 [" 462
/

/

<[>

)_110

\ V]

Fig. 10
\[—' 500

502
Receive Inputs }_
l 504
Map Inputs To Events j_

'

)'— 506
Process Inputs Based On Events

Fig. 1

US 6,704,032 B1

1

METHODS AND ARRANGEMENTS FOR
INTERACTING WITH CONTROLLABLE
OBJECTS WITHIN A GRAPHICAL USER
INTERFACE ENVIRONMENT USING
VARIOUS INPUT MECHANISMS

TECHNICAL FIELD

This invention relates to graphical user interfaces (GUIs),
and more particularly to methods and arrangements that
support the interaction of the user, through a variety of
different types of input mechanisms, with different types of
controllable objects displayed within a GUI environment.

BACKGROUND

Graphical user interfaces (GUISs) are popular in a variety
of computing applications and/or operating systems. A typi-
cal GUI provides visual feedback to the user of his or her
actions (e.g., inputs and responses thereto).

There is an ongoing move to make devices or other types
of appliances seemingly “smarter” or at least more user
friendly by introducing similar graphical interfaces and like
capabilities. Thus, for example, kiosks, automatic teller
machines, microwave ovens, video cassette recorders
(VCRs), cellular telephones, and the like are beginning to
provide GUIs that are programmed to enrich the user’s
interactions with the device or appliance. This may include,
for example, adding selectable icons, scrollable lists, and
hierarchical forms or pages.

More interestingly for this background section, in certain
instances, physical user interfaces, such as, e.g., knobs,
buttons, switches, handles, and the like, can be graphically
modeled and included within the graphical user interface as
selectable/movable objects. Hence, a user can graphically
open a closed drawer, turn up/down a volume control, or
perhaps select a feature, product or service.

Causing such an action to occur typically requires the user
to provide the requisite user inputs to the controlling oper-
ating logic. This may include physically moving and/or
activating an input mechanism, such as, e.g., a mouse, a
trackball or the like, which provides corresponding user
input signals to the operating logic, directly or indirectly.
The operating logic (e.g., an operating system software and
associated hardware suite) may also be configured to interact
with other program logic (e.g., application software).

Aunother common type of physical input device is a touch
pad or touch screen. Touch screens are usually configured to
allow the user to touch an exposed surface on a cathode ray
tube (CRT), liquid crystal display (LCD), plasma display, or
the like, through which the GUI environment and the
controllable objects are visible. Here, the user may touch the
exposed surface with his or her finger or some other object,
such as, e.g., a stylus. The touch screen includes a detection
mechanism (e.g., an electrically detectable grid array) con-
figured to detect the point of contact on the exposed surface
and to provide this positional information to the operating
logic. Provided with this positional information, the oper-
ating logic and/or program logic can determine which con-
trollable object, the user is attempting to select, move, alter,
or otherwise influence.

Manufacturers of various systems and devices tend to
invest significant resources into the development of func-
tional and often aesthetically pleasing physical and/or virtual
user interfaces. These manufacturers, e.g., original equip-
ment manufacturers (OEMs), usually have a preferred style

10

15

20

25

30

35

40

45

50

55

60

65

2

for their user interface and associated functionality that
usually differentiates their product, at least commercially,
from their competitor’s products.

Having a wide variety of user interfaces can prove chal-
lenging to independent software developers and others
attempting to produce software products that run on a
variety of devices. By way of example, automobile com-
puter manufacturers have a strong desire to maintain control
over the user interaction model their products exhibit. This
has historically provided a significant barrier to the devel-
opment of user-interface platform technology that supports
running independently designed software applications on
such OEM products. One of the problems in this exemplary
industry is that different OEMs implement different hard-
ware input schemes. For example, one manufacturer may
favor using a single rotating knob with an enter/action
button for navigation of their product’s GUI form, whereas
another might favor a directional pad (up, down, left, right)
and an enter/action key.

Consequently, there is a need for improved methods and
arrangements that provide user interface platforms that are
capable of meeting the varying interface requirements of
manufacturers, while also promoting the development of
independently designed software applications.

SUMMARY

Improved methods and arrangements provide user inter-
face platforms that are capable of meeting the unique
requirements of manufacturers, while also advantageously
supporting the development of independently designed soft-
ware applications.

In accordance with certain aspects of the present
invention, methods and arrangements are provided whereby
certain key events are defined and operatively associated
with the hardware suite. These key events, which are essen-
tially virtual events, can be invoked or otherwise imple-
mented by the manufacturers and independent software
vendor (ISV) applications. These key events are categorized
as being either determinate events or indeterminate events,
and their functionality can be based on different behavior
models.

The behavior models consider the notion that the user
interface will most likely include various focusing (e.g.,
function selection) and/or editing (e.g., parameter
modifying) capabilities. As such, the methods and arrange-
ments can support several different behavior models,
including, for example, a full-focus mode, a focus-free
mode, and an edit-free mode.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the various methods
and arrangements of the present invention may be had by
reference to the following detailed description when taken in
conjunction with the accompanying drawings wherein:

FIG. 1 is block diagram depicting an exemplary device
having a user input mechanism, a display device, operating
logic, and program logic, suitable for use with certain
implementations of the present invention.

FIG. 2 is a block diagram depicting an exemplary com-
puter environment that is suitable for use with certain
implementations of the present invention.

FIG. 3 is a graphical illustration of a frontal view of an
exemplary device, as in FIG. 1, having a user input mecha-
nism and a display.

FIG. 4 is a graphical illustration of a plurality of exem-
plary input mechanisms suitable for use in the device of FIG.

US 6,704,032 B1

3

FIG. 5 is a graphical illustration of a plurality of exem-
plary controllable objects suitable for display by the device
of FIG. 1.

FIGS. 6(a—f) demonstratively illustrate certain exemplary
methods associated with a full-focus behavior model in
which controllable objects, as in FIG. 5, are selectively
brought into focus and the object/form is selectively placed
into an edit mode through user inputs.

FIGS. 7(a—b) demonstratively illustrate certain exemplary
methods associated with a focus-free behavior model in
which controllable objects, as in FIG. 5, are inherently in
focus for selected events and edited through user inputs with
the object/form in edit mode.

FIGS. 8(a—c) demonstratively illustrate certain further
exemplary methods associated with a focus-free behavior
model in which controllable objects, as in FIG. § and FIG.
1, are inherently in focus for selected events and edited
through user inputs with the object/form in edit mode.

FIGS. 9(a—c) demonstratively illustrate certain exemplary
methods associated with a edit-free behavior model in which
controllable objects, as in FIG. 5, are selectively brought
into focus and edited through user inputs with the object/
form in edit mode.

FIG. 10 demonstratively illustrates a plurality of addi-
tional exemplary controllable objects suitable for display by
the device of FIG. 1.

FIG. 11 is a flow-chart depicting a method for mapping
user inputs to key events in accordance with certain exem-
plary implementations of the present invention.

DETAILED DESCRIPTION

In FIG. 1 a device 100 is depicted as including operating
logic 102 wherein certain key events 104 have been defined.
Operating logic 102 is operatively coupled to at least one
user input mechanism 106 and a display device 110.
Additionally, program logic 108 is operatively configured to
function with operating logic 102.

Device 100 can be any device, including, for example, a
stand alone device, a peripheral device, an appliance, a
hand-held device, an entertainment device, a communica-
tion device, a portable device, etc., that is designed to
present the user with a GUI environment having controllable
objects, features or functions.

With this in mind, in accordance with certain exemplary
implementations, device 100 can include a computer, for
example, as described below and shown in FIG. 2.

Operating logic 102 can include hardware components,
software components, or a mixture thereof. For example, in
certain implementations operating logic 102 includes pro-
cessing and memory hardware (not shown), wherein the
processing hardware is responsive to operating system and
other software instructions as stored within the memory or
as otherwise provided.

Regardless of form, in accordance with certain exemplary
implementations, operating logic 102 is essentially program-
mable to receive user inputs from input mechanism 106, and
map the user inputs to key events that can be processed per
instruction from within operating logic 102 and/or program
logic 108. Certain processed key events will modify the
functioning of device 100 in some way.

Input mechanism 106 includes at least one physical user
input device, such as, e.g., an electrical switch, a mechanical
switch, an optical switch, a thermal switch, a transducer, a
touch pad, a keypad, a button, a rotating knob, a push knob,
a pull knob, a directional pad, a toggle switch, a joystick, or

10

15

20

25

30

35

40

45

50

55

60

65

4

the like. Hence, input mechanism 106 allows the user to
initiate an event that is detectable by operating logic 102.

Program logic 108 may also include hardware
components, software components, or a mixture thereof.
However, for simplicity the remainder of this description
assumes that program logic 108 is essentially a software
product.

Display 110 can include any conventional display or
monitor, including, e.g., a cathode ray tube (CRT), a liquid
crystal display (LCD), a plasma display, a projector, a light
display, etc. Though depicted as functionally separate in
FIG. 1, display device 110 may also be both operatively and
physically associated with input mechanism 106, as is often
the situation with touch screens and the like.

Reference is now made to FIG. 2, which is a block
diagram of an exemplary computing system 200.

Computing system 200 is, in this example, a personal
computer (PC), however, in other examples computing
system may take the form of a special-purpose device, an
appliance, a handheld computing device, a cellular tele-
phone device, a pager device, etc. Moreover, the arrange-
ment in FIG. 1 can be distributed between a plurality of
computers/devices.

As shown, computing system 200 includes a processing
unit 221, a system memory 222, and a system bus 223.
System bus 223 links together various system components
including system memory 222 and the processing unit 221.
System bus 223 may be any of several types of bus struc-
tures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. System memory 222 typically includes read
only memory (ROM) 224 and random access memory
(RAM) 225. A basic input/output system 226 (BIOS), con-
taining the basic routine that helps to transfer information
between elements within computing system 200, such as
during start-up, is stored in ROM 224. Computing system
200 further includes a hard disk drive 227 for reading from
and writing to a hard disk, not shown, a magnetic disk drive
228 for reading from or writing to a removable magnetic
disk 229, and an optical disk drive 30 for reading from or
writing to a removable optical disk 231 such as a CD ROM
or other optical media. Hard disk drive 227, magnetic disk
drive 228, and optical disk drive 230 are connected to
system bus 223 by a hard disk drive interface 232, a
magnetic disk drive interface 233, and an optical drive
interface 234, respectively. These drives and their associated
computer-readable media provide nonvolatile storage of
computer readable instructions, data structures, computer
programs and other data for computing system 200.

A number of computer programs may be stored on the
hard disk, magnetic disk 229, optical disk 231, ROM 224 or
RAM 225, including an operating system 235, one or more
application programs 236, other programs 237, and program
data 238.

A user may enter commands and information into com-
puting system 200 through various input devices such as a
keyboard 240 and pointing device 242 (such as a mouse,
etc.). An additional input mechanism(s) 255 can also be
included via an appropriate interface 257.

As shown, a monitor 247 or other type of display device
is also connected to the system bus 223 via an interface, such
as a video adapter 245. In addition to the monitor, computing
system 200 may also include other peripheral output devices
(not shown), such as speakers, printers, etc.

Computing system 200 may operate in a networked
environment using logical connections to one or more

US 6,704,032 B1

5

remote computers, such as a remote computer 249. Remote
computer 249 may be another personal computer, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to computing system 200,
although only a memory storage device 250 has been
illustrated in FIG. 2.

The logical connections depicted in FIG. 2 include a local
area network (LAN) 251 and a wide area network (WAN)
252. Such networking environments are commonplace in
offices, enterprise-wide computer networks, Intranets and
the Internet.

When used in a LAN networking environment, comput-
ing system 200 is connected to the local network 251
through a network interface or adapter 253. When used in a
WAN networking environment, computing system 200 typi-
cally includes a modem 254 or other means for establishing
communications over the wide area network 252, such as the
Internet. Modem 254, which may be internal or external, is
connected to system bus 223 via the serial port interface 246.

In a networked environment, computer programs depicted
relative to the computing system 200, or portions thereof,
may be stored in the remote memory storage device. It will
be appreciated that the network connections shown are
exemplary and other means of establishing a communica-
tions link between the computers may be used.

Reference is now made to FIG. 3, which graphically
depicts an exemplary device in the form of an automobile
computer 400 suitable for mounting in a dashboard location.
As viewed from the front, automobile computer 400
includes a bezel 402 providing access to at least one input
mechanism 106 and display 110. Here, for example, input
mechanism 106 includes an action button 410. Action button
410 may be associated a variety of actions, including, e.g.,
navigating a displayed GUI environment or form 406,
selecting a feature/function, entering data, or the like.

As shown, display 110 includes a GUI environment or
form 406 having a controllable object 408 displayed therein.
Controllable object 408 can take a variety of forms,
including, e.g., information input objects, controllable indi-
cator objects, virtual button objects, virtual switch objects,
virtual keypad objects, virtual panel objects, etc.

FIG. 4 depicts certain exemplary input mechanisms, suit-
able for use as input mechanism 106. The first example is a
directional pad 412 that allows the user to selectively
navigate through form 406 and/or otherwise selectively
control controllable object 408. Here, as depicted in the
upper example, directional pad 412 allows for up, down,
left, and right input selections. In certain implementations,
directional pad 412 may also provide for an action input by
allowing the user to push inward at the center. This type of
activation is graphically demonstrated in the lower example
of directional pad 412'.

The next example in FIG. 4 is a set of directional buttons
414 that together provide navigational inputs. In the upper
example directional button (down) 414(a) is not activated,
while in the lower example 414(a)' is activated.

In another example of FIG. 4, a rotating knob 416 is
depicted. Here, rotating knob 416 is demonstrated as being
a push-knob because it can be depressed in addition to be
rotated. When knob 416' is depressed by the user, for
example, as demonstrated in the lower example, the user is
able to provide an action input. Hence, a user can navigate
about an appropriately configured form 406 by selectively
rotating the knob and pushing the knob inward.

FIG. 5 illustrates certain exemplary controllable objects
408 in the form of sliders. The first example is a virtual

10

20

25

30

35

45

50

55

60

65

6

vertical slider 420. Here, a thumb 422 is can be adjusted or
moved along channel 424 to modify operating parameters,
select features/functions, etc. The next example is a virtual
horizontal slider 426, which is essentially vertical slider 420
rotated 90 degrees to one side. Hence, horizontal slider 426
also includes a thumb 422 that travels along a channel 424.
The remaining example in FIG. 5 is a virtual row of vertical
sliders 428 that includes a plurality of vertical sliders 420,
such as, vertical sliders 420(a—c).

Improved methods and arrangements will now described
whereby virtual key events 104 are operatively associated
with input mechanism 106. This scheme allows program
logic 108 to be designed to interpret events 104 in a manner
that remains faithful to a desired interaction model associ-
ated with device 100. Thus, for example, an OEM is able to
design a unique hardware user interface to work in conjunc-
tion with the controllable object(s) 408, without compro-
mising application compatibility or user-interface consis-
tency.

By way of example, let us assume that program logic 108
is a graphic equalizer having a row of vertical sliders 428.
By implementing this scheme the graphic equalizer program
could run on devices having a touch screen input
mechanism, and also on devices having a push-knob input
mechanism.

Key events 104 come in two varieties. The first variety is
termed “determinate” in that the resulting control action is
always intended to be the same, regardless of an edit state
associated with either a controllable object 408 or form 406.
The second variety is termed “indeterminate” in that the
resulting control action varies based on the edit state.

In accordance with certain exemplary implementations,
determinate key events include focus adjusting events, such
as, e.g., focus right, focus left, focus up, focus down, focus
upper right, focus lower left, focus upper left, focus lower
right. The determinate key events also include value adjust-
ing events, such as, e.g., value right, value left, value up,
value down, value increment, value decrement. Certain edit
key events are also determinate key events, such as, e.g.,
enter edit mode and exit edit mode; as are certain focus key
events such as, focus next and focus previous. Indeterminate
key events can include key events such as right, left, up,
down, and other key events such as, e.g., advance, decline,
and action.

In accordance with certain aspects, an OEM, for example,
provides a driver program that is configured to map input
mechanism 106 to the key events 104, according to the
OEM’s desired interaction model. For example, a rotating
knob could generate Advance/Decline events, a directional
pad could generate Right/Left/Up/Down events, and/or an
enter button could generate an Action event. Likewise, a
combination directional pad and rotating knob could gener-
ate Focus Right/Left/Up/Down and Value Increment/
Decrement events, respectively. Combination “move” and
“adjust” knobs could generate Focus Next/Previous and
Value Increment/Decrement events, respectively. In still
another example, combination Enter/Back buttons would
generate Enter/Escape events, respectively.

Preferably, each controllable object (e.g., 408) is config-
ured to respond to all applicable key events. Thus, for
example, horizontal slider 426 (see FIG. 5) could be con-
figured as follows:

US 6,704,032 B1

Determinate Key Events:

Focus Right 'no-op
Focus Left 'no-op
Focus Up 'no-op
Focus Down 'no-op
Focus UpperRight 'no-op
Focus LowerLeft 'no-op
Focus UpperLeft 'no-op
Focus Lower Right 'no-op
Focus Next 'no-op
Focus Previous 'no-op

Value Right = increase value

Value Left = decrease value

Value Up 'no-op
Value Down

Value Increment = increase value
Value Decrement = decrease value
Enter Edit = enter edit mode

Exit Edit = exit edit mode
Indeterminate Key Events:

Right = if edit mode, increase value

Left = if edit mode, decrease value

Up = if edit mode, increase value

Down = if edit mode, decrease value

Advance = if edit mode, increase value

Decline = if edit mode, decrease value

Action = if edit mode, exit; if non-edit mode, enter edit mode

There are several types of operational behavior models
that can be supported through the proper selection of key
events and responses thereto. In a first example, a full-focus
behavior model will be illustrated with references to FIGS.
6(a—.

In FIG. 6(a) a display 110 is shown as having two vertical
sliders, i.e., controllable objects 420(a) and 420(b). Since
there are two sliders in this example, the user needs to be
able to select between them. In accordance with certain
exemplary implementations, a “focus™ capability is provided
wherein applicable user inputs are associated with changing
the focus or selection between controllable objects.

This focus capability associated with the exemplary full-
focus behavior model is illustrated in FIGS. 6(b) and 6(c). In
FIG. 6()), operating logic 102 and/or program logic 108
have interpreted focus key events as placing controllable
object (slider) 420(a) in focus as illustrated by surrounding
dashed line box 440. Placing controllable object 420(a) in
focus may be accompanied by some graphical change
thereto; for example, the object may be highlighted or
brightened in some way. Next, in FIG. 6(c), focus has moved
to controllable object (slider) 420(b) as illustrated by sur-
rounding dashed line box 440.

FIGS. 6(d—f) are similar to FIGS. 6(a—c), respectively, for
two horizontal slider controllable objects 426(a) and 426(b).
As shown, in FIG. 6(e), controllable object 426(a) has been
placed in focus as illustrated by surrounding dashed line box
440. In FIG. 6(f), focus has moved to controllable object
(slider) 426(b), again as illustrated by surrounding dashed
line box 440.

In the exemplary full-focus behavior model, once the user
has selected a controllable object by placing the object in
focus, then the controllable object and/or form needs to be
placed in an “edit mode™ that allows the controllable object
to be controlled, e.g., to modify/change values associated
with the controllable object. Determinate key events are
provided for entering/exiting edit mode. The edit mode can
be associated with controllable objects and/or the form.
Referring to FIGS. 6(b—c) and FIGS. 6(e—f), an edit mode

10

15

20

25

35

40

45

50

60

65

8

has been illustrated by dashed directional arrow 442. Thus,
for example, in FIG. 6(b) controllable object 420(a) is in
focus (box 440) and the controllable object is in edit mode
(arrow 442). In FIG. 6(c), controllable object 420(b) is in
focus (box 440) and in edit mode (arrow 442). Similarly, the
presence of arrow 440 in FIGS. 6(¢) and 6(f) place the
controllable object (that is in focus) in edit mode.

Another operational behavior model is a “focus-free”
model. An exemplary focus-free model is illustrated in
FIGS. 7(a-b). In FIG. 7(a), display 110 includes a form
having a vertical slider controllable object 420 and a hori-
zontal slider controllable object 426. As should be apparent
from this illustration, an up or down key events need only be
operatively associated with vertical slider controllable
object 420. Likewise, left or right key events need only be
operatively associated with horizontal slider controllable
object 426. Consequently, in this example, there is no reason
to require the user to place a controllable object into focus,
hence the name focus-free.

The controllable objects/form is essentially, inherently in
an edit mode for selected key events, as illustrated by dashed
arrows 442 in FIGS. 7(a-b). In FIG. 7(a) controllable object
420 is shown as being editable. In FIG. 7(b) controllable lo
object 426 is shown as being editable. In certain
implementations, the controllable objects are configured to
support event “focus-free” properties that determine for
select determinate or indeterminate events, whether the
controllable object should always receive the key events
regardless of any current focus.

For FIGS. 7(a-b), for example, the controllable objects
could be operatively configured as follows:

(1) The horizontal slider’s properties are set as follows:
FocusFreeRightLeft = True; //control always gets Right and Left events.
EditFreeRight = True; //indeterminate Right always increases value.
EditFreeLeft = True; //indeterminate Left always decreases value.
EditFreeUp = False; //if edit mode, increase value.
EditFreeDown = False; //if edit mode, decrease value.
EditFreeAdvance = False; //if edit mode, increase value.
EditFreeDecline = False; //if edit mode, decrease value.

(2) The vertical slider’s properties are set as follows:

FocusFreeUpDown = True; //control always gets Up and Down events.
EditFreeRight = False; //if edit mode, increase value.

EditFreeleft = False; //if edit mode, decrease value.

EditFreeUp = True; //indeterminate Up always increases value.
EditFreeDown = True; //indeterminate Down always decreases
value.

//if edit mode, increase value.

//if edit mode, decrease value.

EditFreeAdvance = False;
EditFreeDecline = False;

FIGS. 8(a—c) ecach depict yet another example of a form
that could implement a focus-free behavior model. Here, in
addition to controllable objects 420 and 426, as in FIGS.
7(a—b), an additional virtual action button 450 has been
included in the form on display 110.

As illustrated by dashed arrows 442, vertical slider con-
trollable object 420 is editable in FIG. 8(a) and horizontal
slider controllable object 426 is editable in FIG. 8(b). In
FIG. 8(c) virtual action button 450 is editable as illustrated
by lines 452 extending outwardly.

For FIGS. 8(a—c), for example, the controllable objects
could be operatively configured as follows:

US 6,704,032 B1

(1) The horizontal slider’s properties are set as follows:
FocusFreeRight = True; //slider always gets Right event.
FocusFreeleft = True; //slider always gets Left event.
EditFreeRight = True; //indeterminate Right always increases value.
EditFreeLeft = True; //indeterminate Left always decreases value.
EditFreeUp = False; //if edit mode, increase value.
EditFreeDown = False; //if edit mode, decrease value.
EditFreeAdvance = False; //if edit mode, increase value.
EditFreeDecline = False; //if edit mode, decrease value.
(2) The vertical slider’s properties are set as follows:
FocusFreeUp = True; //slider always gets Up event.
FocusFreeDown = True; //slider always gets Down event.
EditFreeRight = False; //if edit mode, increase value.
EditFreeLeft = False; //if edit mode, decrease value.
EditFreeUp = True; //indeterminate Up always increases value.
EditFreeDown = True; //indeterminate Down always decreases
value.
EditFreeAdvance = False; //if edit mode, increase value.
EditFreeDecline = False; //if edit mode, decrease value.
(3) The virtual action button’s properties are set as follows:
FocusFreeAction = True; //button always gets Enter event.

An OEM, for example, may also selectively control the
availability of a focus-free behavior model using overriding
identifiers. In certain implementations, therefore, in order
for focus-free behavior to be exhibited, the OEM must
declare which focus-free events will be supported by the
device and their prescribed interaction model.

For example, an AllowFocusFree<event(s)> option can be
provided that indirectly determines whether focus-free
behavior will be honored for a particular form. Here, an
OEM must satisfy all focus-free requests within a form
before any focus-free behavior will be exhibited.

Examples include:

(1) Focus-free granted:
ISV form requests:
FocusFreeRightlLeft=True
FocusFreeUp/Down=True
OEM settings:
AllowFocusFreeRightlLeft=True
AllowFocusFreeUpDown=True

Result=Fully focus-free operation will be exhibited on the
form. No controls will display focus.

(2) Focus-free not granted:

ISV form requests:
FocusFreeRightlLeft=True
FocusFreeUp/Down=True
OEM settings:
AllowFocusFreeRightlLeft=True
AllowFocusFreeUpDown=False

Result=No focus-free operation will be exhibited on the
form. All interactive controls will display focus, and
will need to get focus in order to receive key events.

FIGS. 9(a—c) each depict yet another exemplary behavior
model. Here, the form can include “edit-free” behaviors. As
illustrated, in each of FIGS. 9(a—c), display 110 includes a
form having a row of vertical slider controllable objects 428.
Here, because each of the controllable objects (420)
responds to similar inputs (e.g., up/down), the edit-free
behavior allows the user to simply place one of the control-
lable objects in focus and edit it without having to explicitly
enter the object/form into an edit mode.

Thus, for example, in FIG. 9(a) controllable object 420(a)
becomes editable (arrow line 442) upon being placed in
focus (box 440). In FIG. 9(), controllable object 420(b)
becomes editable (arrow line 442) upon being placed in
focus (box 440). Similarly, as shown in FIG. 9(c), control-

10

15

20

25

30

35

40

45

50

55

60

65

10

lable object 420(c) becomes editable (arrow line 442) upon
being placed in focus (box 440).

As before, certain implementations support the OEM’s
ability to override program logic 108 with respect to forms
that request edit-free behavior. Thus, for example, an
AllowEditFree option can be implemented that determines
whether the OEM will honor any controllable objects’
EditFree<event>=True settings. If AllowEditFree is set to
False, any control that would otherwise allow manipulation
regardless of edit-mode would, nevertheless would need to
be in edit mode.

By way of example, with such an AllowEditFree option
set to False the side-by-side vertical sliders of FIGS. 6(a—c)
can be operatively configured as follows in an edit-free
behavior model:

Both vertical sliders’ edit-free properties can be set as follows:

EditFreeRight = False; //if edit mode, increase value.

EditFreeleft = False; //if edit mode, decrease value.

EditFreeUp = True; //indeterminate Up always increases value.

EditFreeDown = True; //indeterminate Down always decreases
value.

EditFreeAdvance = False; //if edit mode, increase value.

EditFreeDecline = False; //if edit mode, decrease value.

Similarly, with an AllowEditFree option set to False, for a horizontal

slider, the edit-free properties can be set as follows:

EditFreeRight = True; //indeterminate Right always increases value.

EditFreeLeft = True; //indeterminate Left always decreases value.

EditFreeUp = True; //indeterminate Up always increases value.

EditFreeDown = True; //indeterminate Down always decreases

value.

EditFreeAdvance = True; //inderterminate Advance always increases
value.

EditFreeDecline = True; //indeterminate Decline always decreases
value.

Reference is now made to FIG. 10, which depicts certain
other exemplary types of controllable objects that may also
be included in a form on display 110. Here, an edit box
object 460, a spinner box object 462 and a scrollable list box
object 464 are depicted. These and other GUI object and
various forms, themes, and the like are well known.

A flow-chart is depicted in FIG. 11 for a method 500 for
mapping user inputs to key events 104 (see FIG. 1), in
accordance with certain exemplary implementations. In step
502, user inputs are received from at least one input mecha-
nism 106. In step 504, the inputs are mapped to key events
104. In step 506, the inputs are processed according to the
key events 104.

Although some preferred implementations of various
methods and arrangements have been illustrated in the
accompanying Drawings and described in the foregoing
Description, it will be understood that the invention is not
limited to the exemplary implementations disclosed, but is
capable of numerous rearrangements, modifications and
substitutions as set forth and defined by the following
claims.

What is claimed is:

1. A method for interfacing multiple different user input
hardware arrangements with virtual object-based graphical
user interface logic, the method comprising:

generating a displayable form within a graphical user

interface, the displayable form including at least one
controllable virtual user-input object;

establishing a set of key events, wherein at least a portion

of the key events can be operatively associated with a
plurality of different types of non-virtual user input
mechanisms;

receiving user input via at least one non-virtual user input

mechanism selected from the plurality of different
types of non-virtual user input mechanisms;

US 6,704,032 B1

11

establishing a behavior model for the displayable form;

and

determining when an operational change associated with

the controllable virtual user-input object is required
based at least on the behavior model and the received
user input and when appropriate causing the opera-
tional chance to occur such that the virtual user-input
controllable object is graphically altered in appearance
and associated controlled logic functionality is modi-
fied accordingly.

2. The method as recited in claim 1, wherein the control-
lable virtual user-input object is only operatively control-
lable when in an edit mode.

3. The method as recited in claim 2, wherein the control-
lable virtual user-input object is selectively placed in the edit
mode via at least one of the key events.

4. The method as recited in claim 2, wherein the control-
lable virtual user-input object is selectively placed in the edit
mode via an override identifier.

5. The method as recited in claim 2, wherein the control-
lable virtual user-input object is always in the edit mode.

6. The method as recited in claim 1, wherein the control-
lable virtual user-input object is only operatively control-
lable when the controllable virtual user-input object is in a
focus mode.

7. The method as recited in claim 6, wherein the control-
lable virtual user-input object is selectively placed in the
focus mode via at least one of the key events.

8. The method as recited in claim 6, wherein the control-
lable virtual user-input object is always in the focus mode.

9. The method as recited in claim 1, wherein the control-
lable virtual user-input object is programmable to selectively
respond to each one of the key events.

10. The method as recited in claim 1, wherein the set of
key events includes a subset of key events that operate
independent an operational mode associated with the dis-
playable form, and the operational mode includes an edit
mode and a non-edit mode.

11. The method as recited in claim 1, wherein the set of
key events includes a subset of key events that operate
depending upon an operational mode associated with the
displayable form, and the operational mode includes an edit
mode and a non-edit mode.

12. The method as recited in claim 1, wherein a plurality
of controllable virtual user-input objects are provided within
the displayable form and a focus on a particular one of the
controllable virtual user-input objects is selectable via at
least one corresponding focus event selected from the set of
key events.

13. The method as recited in claim 12, wherein, when
placing the focus on the particular one of the controllable
virtual user-input objects further allows the controllable
virtual user-input object to be selectively placed in the edit
mode via a corresponding edit event selected from the set of
key events.

14. The method as recited in claim 13, wherein the
controllable virtual user-input object is automatically placed
in the edit mode when the focus is on the particular one of
the controllable virtual user-input objects.

15. The method as recited in claim 1, wherein at least one
of the set of key events is selected from a group of key
events comprising: focus right, focus left, focus up, focus
down, focus upper right, focus, lower left, focus, upper left,
focus lower right, value right, value left, value up, value
down, value increment, value decrement, enter edit, exit
edit, focus next, focus previous, right, left, up, down,
advance, decline, action, edit free right, edit free left, edit
free up, edit free down, edit free advance, and edit free
decline.

10

15

20

25

35

40

45

50

55

60

65

12

16. The method as recited in claim 1, wherein the non-
virtual user input mechanism is selected from a group of
input mechanisms comprising: an electrical switch, a
mechanical switch, an optical switch, a thermal switch, a
transducer, a touch pad, a keypad, a button, a rotating knob,
a push knob, a pull knob, a directional pad, a toggle switch,
and a joystick.

17. The method as recited in claim 1, wherein the con-
trollable virtual user-input object is selected from a group of
graphically displayable controllable virtual user-input
objects comprising sliders, knobs, buttons, edit fields,
spinners, and scrollable boxes.

18. A computer-readable medium having computer-
executable instructions for performing steps comprising:

generating a displayable form within a graphical user

interface, the displayable form including at least one
controllable virtual user-input object;

establishing a set of key events, wherein at least a portion

of the key events can be operatively associated with a
plurality of different types of non-virtual user input
mechanisms;
receiving user input via at least one non-virtual user input
mechanism selected from the plurality of different
types of non-virtual user input mechanisms;

establishing a behavior model for the displayable form;
and

determining when an operational change associated with

the controllable virtual user-input object is required
based at least on the behavior model and the received
user input and when appropriate causing the opera-
tional change to occur such that the virtual user-input
controllable object is graphically altered in appearance
and associated controlled logic functionality is modi-
fied accordingly.

19. The computer-readable medium as recited in claim 18,
wherein the controllable virtual user-input object is only
operatively controllable when in an edit mode.

20. The computer-readable medium as recited in claim 19,
wherein the controllable virtual user-input object is selec-
tively placed in the edit mode via at least one of the key
events.

21. The computer-readable medium as recited in claim 19,
wherein the controllable virtual user-input object is selec-
tively placed in the edit mode via an override identifier.

22. The computer-readable medium as recited in claim 19,
wherein the controllable virtual user-input object is always
in the edit mode.

23. The computer-readable medium as recited in claim 18,
wherein the controllable virtual user-input object is only
operatively controllable when the controllable virtual user-
input object is in a focus mode.

24. The computer-readable medium as recited in claim 23,
wherein the controllable virtual user-input object is selec-
tively placed in the focus mode via at least one of the key
events.

25. The computer-readable medium as recited in claim 23,
wherein the controllable virtual user-input object is always
in the focus mode.

26. The computer-readable medium as recited in claim 18,
wherein the controllable virtual user-input object is pro-
grammable to selectively respond to each one of the key
events.

27. The computer-readable medium as recited in claim 18,
wherein the set of key events includes a subset of key events
that operate independent an operational mode associated
with the displayable form, and the operational mode
includes an edit mode and a non-edit mode.

US 6,704,032 B1

13

28. The computer-readable medium as recited in claim 18,
wherein the set of key events includes a subset of key events
that operate depending upon an operational mode associated
with the displayable form, and the operational mode
includes an edit mode and a non-edit mode.

29. The computer-readable medium as recited in claim 18,
wherein a plurality of controllable virtual user-input objects
are provided within the displayable form and a focus on a
particular one of the controllable virtual user-input objects is
selectable via at least one corresponding focus event
selected from the set of key events.

30. The computer-readable medium as recited in claim 29,
wherein, when placing the focus on the particular one of the
controllable virtual user-input objects further allows the
controllable virtual user-input object to be selectively placed
in the edit mode via a corresponding edit event selected from
the set of key events.

31. The computer-readable medium as recited in claim 30,
wherein the controllable virtual user-input object is auto-
matically placed in the edit mode when the focus is on the
particular one of the controllable virtual user-input objects.

32. The computer-readable medium as recited in claim 18,
wherein at least one of the set of key events is selected from
a group of key events comprising: focus right, focus left,
focus up, focus down, focus upper right, focus, lower left,
focus, upper left, focus lower right, value right, value left,
value up, value down, value increment, value decrement,
enter edit, exit edit, focus next, focus previous, right, left, up,
down, advance, decline, action, edit free right, edit free left,
edit free up, edit free down, edit free advance, and edit free
decline.

33. The computer-readable medium as recited in claim 18,
wherein the controllable virtual user-input object is selected
from a group of graphically displayable controllable virtual
user-input objects comprising sliders, knobs, buttons, edit
fields, spinners, and scrollable boxes.

34. An apparatus comprising:

at least one non-virtual user input mechanism;

a display; and

logic operatively coupled to the non-virtual user input

mechanism and the display and configured to generate
a displayable form within a graphical user interface on
the display wherein the displayable form includes at
least one controllable virtual user-input object, estab-
lish a set of key events, wherein at least a portion of the
key events can be operatively associated with the one
none virtual user input mechanism and at least one

10

15

20

25

30

35

40

45

14

other different type of non-virtual user input
mechanism, receive user input via the one non-virtual
user input mechanism, establish a behavior model for
the displayable form, determine when an operational
change associated with the controllable virtual user-
input object is required based at least on the behavior
model and the received user input, and cause the
operational change to occur such that the virtual user-
input controllable object is graphically altered in
appearance and associated controlled functionality of
the apparatus is modified accordingly.

35. The apparatus as recited in claim 34, wherein the
controllable virtual user-input object is only operatively
controllable when in an edit mode.

36. The apparatus as recited in claim 34, wherein the logic
selectively places the controllable virtual user-input object
in the edit mode based on at least one corresponding edit
event selected from the set of key events.

37. The apparatus as recited in claim 34, wherein the logic
selectively places the controllable virtual user-input object
in the edit mode based on a definable override identifier.

38. The apparatus as recited in claim 34, wherein the
controllable virtual user-input object is always in the edit
mode.

39. The apparatus as recited in claim 34, wherein at least
one of the set of key events is selected from a group of key
events comprising: focus right, focus left, focus up, focus
down, focus upper right, focus, lower left, focus, upper left,
focus lower right, value right, value left, value up, value
down, value increment, value decrement, enter edit, exit
edit, focus next, focus previous, right, left, up, down,
advance, decline, action, edit free right, edit free left, edit
free up, edit free down, edit free advance, and edit free
decline.

40. The apparatus as recited in claim 34, wherein the one
non-virtual user input mechanism is selected from a group of
non-virtual user input mechanisms comprising: an electrical
switch, a mechanical switch, an optical switch, a thermal
switch, a touch pad, a keypad, a button, a rotating knob, a
push knob, a pull knob, a directional pad, a toggle switch,
and a joystick.

41. The apparatus as recited in claim 34, wherein the
controllable virtual user-input object is selected from a
group of graphically displayable controllable objects com-
prising sliders, knobs, buttons, edit fields, spinners, and
scrollable boxes.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,704,032 B1 Page 1 of 1
DATED : March 09, 2004
INVENTOR(S) : Falcon et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 6
Line 1, delete “is” between “422” and “can”.

Signed and Sealed this

Twenty-ninth Day of June, 2004

o WD)

JON W. DUDAS
Acting Director of the United States Patent and Trademark Office

