EXHIBIT G

| U US005758352A

United States Patent g9 11 Patent Number: 5,758,352
Reynolds et al. 451 Date of Patent: May 26, 1998
[54] COMMON NAME SPACE FOR LONG AND 1315843 12/1989 Japanceevmrereeriesecines GO6F 12/00
SHORT FILENAMES 2148341 7/1990 Japan GO6F 12/00
6019763 171994 Japanoeeverecerecninannee GOG6F 12/00
[75] Inventors: Aaron R. Reynolds. Redmond; Dennis
R. Adler. Mercer Island; Ralph A. OTHER PUBLICATIONS
Lipe. Woodinville; Ray D. Pedrizetti. Hurwicz, Mike. “MS-DOS 3.1 Makes It Easy to Use IBM
Issaquah; Jeffrey T. Parsons; PCs on a Network.” Data Communications, Nov.. 1985.
Rasipuram V. Arun. both of Redmond. “The Intelligent Way to Search.” News Release. Dateline:
all of Wash. Burlington. MA. Oct.. 1987.
. . . Trivette, Donald B.. “Utility Provides 60—Character Filena-
[73] Assignee: Microsoft Corporation. Redmond. mes.” PC Magazine, vol. 7. N. 16. p.56(1). Sep.. 1988.
Wash. “File sharing Protocol.” Microsoft Corporation. Nov. 7.
1588.
(211 Appl. No.: 711,692 Bonner. Paul, “What’s in a Name?.” PC-Computing, vol. 2.
[22] Filed: Sep. 5, 1996 N. 9. p. 169(2). Sep.. 1988.
Duncan. Ray. “Power Programming Using Long Filenames
Related U.S. Application Data and Extended Attributes. Part 1.” PC Magazine, pp.
317-323, Apr. 24, 1990.
[63] Continuation of Ser. No. 427,004, Apr. 24, 1995, Pat. No. McCormick. John. “Presentation Manager Under OS/2
fjfgélIZb‘:nhézg o continuation of Ser. No. 41497, Apr. Epcourages Lengthy Name-Calling.” Government Com-
’ ’ ' puter News, vol. 9, N. 10, p. 16(2). May 14. 1990.
[51] It CL° GOGF 17/30 Duncan Ray. “Power Programming Using Long Filenames
[52] U.S. Cl ricenrerrsscssnines 707/200; 707/1; 707/6 and Extended Attributes, Part 2" PC Magazine, pp.
[58] Field of Search ..., 395/600; 364/200 305-309, May 15. 1990.
[56] References Cited (List continued on next page.)
U.S. PATENT DOCUMENTS Primary Examiner—Thomas G. Black
Assistant Examiner—Cheryl R. Lewis
4,780,821 10/1988 Crossley . Attorney, Agent, or Firm—Christensen O’Connor Johnson
4987531 1/1991 Nishikado et al. ..oooereerroeee 364200 g Kindness PLLC
5307494 4/1994 Yasumatsu et al. 395/600
5313,646 5/1994 Hendricks et al. ... - 395600 [57] ABSTRACT
5,359,725 10/1994 Garcia et al.ooorvevevncnrersnnnine 395/500
5363487 11/1994 Willman et al. . An operating system provides a common name space for
5,371,885 12/1994 Letwin 395/600 both long filenames and short filenames. In this common
g,ggg»ig:’] g :ggg ga‘lefn - 395/600 npamespace. a long filename and a short filename are pro-
» o aITe! .. . N
5412808 5/1995 Bauer 398/600 vided for each file. Each file has a short MCH@C directory
5421001 5/1995 Methe .eoeeroerecrrrsrsssrreasnrie 305500 Sy andmay have at least one long filename directory entry
5;434’974 7/1995 Loucks et al. . associated with it. The number of long filename directory
5437029 7/1995 Sinha . entries that are associated with a file depends on the number
5,483,652 1/1996 Sudama et al. . of characters in the long filename of the file. The long
5535375 7/1996 Eshel etal. . filename directory entries are configured to minimize com-
patibility problems with existing installed program bases.
FOREIGN PATENT DOCUMENTS
1041039 2/1989 Japancccisreeeerseresesen GO6F 12/00 28 Claims, 8 Drawing Sheets

Last Lot 7 itemome Daactony Enery

Varst hotw alename Deetery tarry

Shorr Tilenarne Dirocturs Ty

5,758,352
" Page 2

OTHER PUBLICATIONS

“World Software Corporation (WSC) Launches Extend—
A-Name in Burope.” Computer Product Update, Jul. 27,
1990.

Glass. Brett. “Create Your Own Environment.” PC-Com-
puting, vol. 3. N. 10. p. 106(6). Oct., 1990.

Bonner. Paul, “Build a Document Manager Under Window.”
PC-Computing, vol. 4, N. 12, p. 275(7). Dec.. 1991.
Rohan, Rebecca, “Golden Retriever Fetches Files in Win-
dows.” Computer Shopper, vol. 12. N. 11, p. 947(1), Nov..
1992.

O'Malley, Chris, “Fetching Desktop Files: Standalone
Document Managers.” Window Sources, vol. 1. N. 2. p.
443(1). Mar., 1993.

“Above Software Introduces Golden Retriever 2.0b"." News
Release. Dateline: Irvine, CA. Mar. 29. 1993.
“Breakthrough on DOS File Name Limits.” Newsbytes News
Network, Apr. 12. 1993.

Mallory, Jim. “Breakthrough on DOS Filename Limits.”
Newsbytes, Apr. 12. 1993.

“New Improved Windows,” PC World, vol. 11. N. 12. p.
252(3). Dec.. 1993.

Samuel J. Leffler et al.. “The Design and Implementation of
the 4.3BSD UNIX Operating System.” Addison-Wesley
Publishing Company, 1989. Chapter 2. pp. 34-36.

Duncan, Ray. “Design Goals and Implementation of the
New High Performance File System.” Sep.. 1989, pp. 1-13.

Duncan. Ray., “Using Long Filenames and Extended
Attributes,” PC Magazine. Parts 1 and 2. Apr. 24 and May
15. 1990, vol. 9, Nos. 8 and 9. pp. 317 and 305.

Wang, Y.E.G. “Universal File Names for Ada.” Ada Letters.
Integrated Software, Inc.. New York. NY, Jan./Feb.. 1990.
pp. 111-117.

U.S. Patent May 26, 1998 Sheet 1 of 8
Data
CPU Processing
System
12
Registers 13
AL} 15
— ——
Y
Memory |16 I/(,) - 14
Devices
os. |17

Figure 1

5,758,352

- 10

U.S. Patent May 26, 1998 Sheet 2 of 8 5,758,352

- 20
Last Long Filename Directory Entry
[]
L
- 20
First Long Filename Directory Entry
- 18
Short Filename Directory Entry

Figure 2

U.S. Patent

Offset
00h

08h

0Bh

0Ch

16h

18h

1Ah

1Ch

20h

May 26, 1998 Sheet 3 of 8

Filename

File Extension

File Attribute

Reserved

Time of Last Update

Date of Last Update

Beginning Disk Cluster

File Size

Figure 3a

- 24

- 26

- 28

- 30

- 32

- 34

- 36

18

5,758,352

U.S. Patent

May 26, 1998 Sheet 4 of 8

Offset
00h
01h Signature
Long Filename
0Bh
File Attributes
0Ch
Flags Field
0Dh :
Checksum
OEh
Long Filename
1Ah
Beginning Disk Cluster
1Ch
Long Filename
20h

Figure 3b

38

- 40

)

- 43

44

48

- 50

5,758,352

U.S. Patent May 26, 1998 Sheet 5 of 8 5,758,352

C Begin)

Y

Create .54
New File

Isa N/
ong Filename
Directory Entry ————
Needed

.58
Allocate Space

for
Directory Entries

59
Fill in
Directory
Entries

Figure 4

U.S. Patent

-

Set Hidden Bit
in File
Attributes Field

v

Set Read Only
Bit in File
Attributes Field

Y

Set System Bit
in File
Attributes Field

Y

Set Volume
Label in File
Attributes Field

Y

Fill in
Signature
Byte Field

Fill in
Checksum
Byte Field

May 26, 1998

62

| 64

- 66

|- -68

- 70

-72

Figure 5a

Sheet 6 of 8

5,758,352

Set Beginning
Disk Cluster
Fieldto 0

74

Y

Fill in
Filename
Bits

- 76

(o)

U.S. Patent May 26, 1998 Sheet 7 of 8 5,758,352

File Attributes 42

Figure 5b

=

Provide a 78
Short File
Name

Use Short File -. 80
Name as Long
File Name

o

Figure 6a

U.S. Patent

=D

Provide a
Long Filename

.84

Is A
Long Name A
Valid Short

Name
?

vNO

Remove All
Spaces From
Long Name

Remove Initial Periods,)
Trailing Periods And
Extra Periods Prior To
The Last Embedded
Period

Translate Any
Illegal Short Name
Characters Into

May 26, 1998

82

Use Long Name
As Short Name

o)

- 90

. 88

.92

. 94

Does
Long Name
Contain An
Exte‘x;lsion

vNO

Truncate Long
Name to
6 Characters

Y

Append "~1"
To Name

Sheet 8 of 8

Name Collide With

5,758,352

Revised Sho
Another Short

86

Increment Number

In Name By |

Shorten Name
To
8 Characters

—

Y

Truncate Leading
Portion to 6 Characters
and Extension to
3 Characters

.96

Use Revised
Name As
Short Name

. 100 X
Append "-1" To
Leading Portion
Of The Name
|
- 102 ‘
v

Figure 6b

. =D

112

5.758.352

1

COMMON NAME SPACE FOR LONG AND
SHORT FILENAMES

This application is a continuation of U.S. patent appli-
cation Ser. No. 081427.004. filed Apr. 24. 1995. now U.S.
Pat. Ser. No. 5.579.517 which is a file wrapper continuation
of U.S. patent application Ser. No. 08/041.497. filed Apr. 1.
1993. now abandoned.

TECHNICAL FIELD

The present invention relates generally to data processing
systems and, more particularly, to a common name space for
long and short filenames.

BACKGROUND OF THE INVENTION

Many operating systems, such as the MS-DOS, version §,
operating system. sold by Microsoft Corporation of
Redmond, Wash., support only short filenames. In the
MS-DOS. version 5§, operating system. filenames may be a
maximum length of eleven characters. Each filename may
have a main portion of eight characters followed by an
extension of three characters. An example filename in the
MS-DOS. version 5. operating system is
“EXAMPLELEXE”, wherein “EXAMPLE1” constitutes the
main portion and “EXE” constitutes the extension.

Each filename is limited to eleven characters due to
constraints in the file system of the MS-DOS, version 5,
operating system. This file system employs a directory
structure in which each file has a directory entry associated
with it. Unfortunately. the directory entry for a file only
supports filenames with a maximum length of eleven char-
acters. Such a limit in the length of the filenames is often
frustrating to a user. The length limit of eleven characters
prevents a user from employing adequately descriptive
filenames and, in many instances. forces a user to insert
awkward abbreviations of descriptive terms into the file-
name.

SUMMARY OF THE INVENTION

It is, therefore. an object of the present invention to
provide a system that supports long filenames.

It is another object of the present invention to provide a
system that supports long filenames while minimizing the
compatibility impact of supporting long filenames.

It is a further object of the present invention to provide a
system that supports a common name space for both long
filenames and short filenames.

In accordance with the first aspect of the present
invention. a method is practiced in a data processing system
having a memory means and a processing means. In accor-
dance with this method, a first directory entry is created and
stored in the memory means for a file. The first directory
entry holds a first filename for the file and information about
the file. A second directory entry is also created and stored
in the memory means. The second directory entry holds at
Ieast one portion of a second filename having a fixed number
of characters and information about the file. One of the first
or second directory entries is accessed in the memory means
to gain access to the information contained therein.

In accordance with another aspect of the present
invention, a data processing system includes a memory that
holds a first directory entry for a file. a second directory
entry for the file, and an operating system. The first directory
entry includes a first filename for the file and the second
directory entry includes the second filename for the file. The

10

20

25

30

35

45

50

55

65

2

second filename includes more characters than the short
filename. The data processing system also includes a pro-
cessor for running the operating system and accessing either
the first directory entry or the second directory entry to
locate the file.

In accordance with yet another aspect of the present
invention. a method is practiced in a data processing system
having memory. In accordance with this method. a file is
created and the file is assigned a user-specified long file-
name. The long filename is manipulated with the data
processing system to create a short filename of fewer
characters. The long filename and the short filename are
stored in memory so that the file can be accessed by either
the long filename or the short filename.

In accordance with a further aspect of the present
invention, a method is practiced in which a first directory
entry for a file is stored in a memory means. The first
directory entry holds the short filename for the file. The short
filename includes at most a maximum number of characters
that is permissible by an application program. A second
directory entry is also stored in the memory means for the
file. A second directory entry holds at least the first portion
of a long filename for the file. The long filename includes a
greater number of characters than the maximum number of
characters that is permissible by the application program.
The application program is run on a processor of the data
processing system. The application program identifies the
file by the short filename.

In accordance with a still further aspect of the present
invention, a method is practiced in which a first directory
entry is stored in the memory means for a file. The first
directory entry holds a short filename for the file that
includes at most the maximum number of characters that is
permissible by the operating system. A second directory
entry is stored in the memory means for the file. The second
directory entry holds a long filename for the file that includes
more than the maximum number of characters that is per-
missible by the operating system. In this instance, the
operating system does not use long filenames; rather. it uses
solely short filenames. The first directory entry is accessed
by the operating system to locate the file.

BRIEF DESCRIFTION OF THE DRAWINGS

A preferred embodiment of the present invention will now
be described herein with reference to the Drawings. The
Drawings include the following Figures.

FIG. 1is a block diagram of a data processing system used
for implementing the preferred embodiment of the present
invention.

FIG. 2 is a block diagram illustrating the storage of short
filename directories in locations adjacent to long filename
directory entries.

FIG. 3a shows the format of a short filename directory
entry in the preferred embodiment of the present invention.

FIG. 3b shows the format of a long filename directory
entry in the preferred embodiment of the present invention.

FIG. 4 is a flow chart illustrating the steps performed by
the preferred embodiment of the present invention when a
new file is created.

FIG. 5a is a flow chart illustrating the steps performed in
creating a long filename directory entry in the preferred
embodiment of the present invention.

FIG. 5b is a block diagram illustrating bits in the file
attributes fields of the long filename directory entry of FIG.
35.

5,758,352

3

FIG. 6a is a flow chart illustrating the steps performed
when a short filename is provided by the user in the
preferred embodiment of the present invention.

FIG. 6b is a flow chart illustrating the steps performed
when a long filename is provided by user in the preferred
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

A preferred embodiment of the present invention
described herein provides support for the use of long file-
names (i.e.. filenames that may have substantially more
characters than current operating systems, such as the
MS-DOS, version 5, operating system permit). “Short file-
names” will be used hereinafter to refer to filenames that
have a small limit (such as 11 characters) as to the maximum
number of characters permitted. In the preferred
embodiment. the long filenames are provided in a common
name space with the short filenames. A long filename and a
short filename are provided for each file in the system. The
sharing of a common name space is realized through pro-
viding separate directory entries for long filenames and short
filenames. Each file has a short filename directory entry
associated with it and may also have at least one long
filename directory entry. The short filenames are like those
provided previously in the MS-DOS, version S, operating
system. The long filenames. as will be described in more
detail below. may have a maximum length of up to 255
characters. The preferred embodiment will be described
with reference to an implementation with the MS-DOS.
version 5. operating system.

The potential compatibility problems of supporting long
filenames are apparent by considering one solution to the
problem of short filenames. This solution is not part of the
present invention and is described herein merely to illustrate
how a preferred embodiment avoids the compatibility prob-
lems suffered by this proposed solution. This solution sup-
ports long filenames by merely increasing the number of
characters the operating system permits for a filename.

There are two major difficulties with this solution. First,
the existing application bases of many systems use only
short filenames (e.g.. 11 characters or less) and are not
prepared to utilize only long filenames (e.g.. up to 255
characters). As an example, an application may allocate a
buffer large enough to hold the short filename and if the
operating system tries to place long filename data into this
buffer, the buffer may overflow so as to cause the application
data to be unexpectedly overwritten. Second. certain disk
utility programs access the file system volume directly and.
thus, do not rely on the operating system to access the files.
If the file system is changed to support long filenames.
compatibility problems with the disk utility programs arise.

The preferred embodiment of the present invention
described herein, in contrast, seeks to minimize the com-
patibility impact of supporting long filenames by providing
both a long filename and a short filename for each file. As
aresult, applications and utilities that require short filenames
still have short filenames available. and applications that use
long filenames have long filenames available.

The preferred embodiment of the present invention may
be implemented as code realized as software or firmware. In
order to support long filenames, the preferred embodiment
of the present invention provides several long filename
application program interfaces (APIs). These APIs are pro-
vided along with the conventional short filename interfaces
that are standard with the operating system. The long

10

15

20

25

30

35

45

50

55

65

4

filename APIs support file operations and directory entries
for long filenames. The APIs include a file attributes
function, a file delete function. a file directory function. a file
find function, a file open/create function and a file rename
function.

The preferred embodiment of the present invention may
be implemented in a data processing system 10 like that
shown in FIG. 1. This data processing system 10 includes a
central processing unit (CPU) 12 with a standard set of
registers 13 that includes an accumulator (AL) register 15,
a memory 16 and input/output (I/O) devices 14. The CPU 12
oversees the operations of the data processing system 10 and
has access to the memory 16 and the I/Q devices 14. The
memory 16 may include both RAM and disc storage. The
memory 16 holds an operating system 17 (denoted as “0.5.”
in FIG. 1) which includes the long and short filename APIs.
Those skilled in the art will appreciate that the present
invention may be implemented on other suitable data pro-
cessing systems.

All of the functions for the long filename APIs and short
filename APIs are incorporated into the operating system 17.
Those functions are supported through an Int 21% interrupt
call (where 21k denotes 21 in hexadecimal notation). In
other words. all the functions are called by executing an Int
21h interrupt, wherein the function that is called through the
Int 214 interrupt is specified by a value placed in a register.
as will be described in more detail below. The Int 214
interface is like that provided in the MS-DOS. version 5.
operating system except that the interface also supports calls
to functions for long filenames. In calls to the long filename
APIs. the function number to be called is placed in the AL
register 15 of a processor, such as the CPU 12 in FIG. 1
before the interrupt is initiated.

In order to support both a long filename and a short
filename for each file, the preferred embodiment provides a
short filename directory entry 18 (FIG. 2) and may provide
at least one long filename directory entry 20 for each file in
a common name space. Each file has a long filename and a
short filename associated with it. A long filename directory
entry 20 is only created when the long filename cannot be
correctly stored in the short filename directory entry. The
long filename directory entries 20 are stored adjacent to the
corresponding short filename directory entry 18 as part of
the common name space used in memory 16. Moreover, the
long filename directory entries 20 are configured to mini-
mize compatibility problems with operating systems that
support only short filenames.

FIG. 2 shows an example of the directory entries 18 and
20 for a file in the preferred embodiment described herein.
The short filename directory entry 18 is provided along with
several long filename directory entries 20. The number of
long filename directory entries 20 provided (including zero
long filename directory entries) for a file depends upon the
number and type of characters in the long filename. As will
be described in more detail below, ecach long filename
directory entry 20 may hold up to 26 characters of a long
filename. The long filename directory entries 20 are dynami-
cally allocated based upon the number of characters in the
long filename. For example, a file with a long filename of 50
characters has two long filename directory entries 20 allo-
cated for it. whereas a file with a long filename of 70
characters has three long filename directory entries 20
allocated for it. As was mentioned above. a long filename
may have a maximum of 255 characters and thus, a maxi-
mum of 10 long filename directory entrics 20 may be
allocated for any file. The maximum of 255 characters per
filename is a product of maximum path length (260
characters) limitations of the operating system 17.

5.758.352

5

There may be many instances in which the long filename
does not completely fill all of the space available in the
allocated long filename directory entries 20. In such an
instance, a null terminator is placed after the last character
of the long filename so that additional spaces or nonsensical
data will not be returned. The extra spaces are filled with
OFFh (where “h” indicates the use of hexadecimal notation).

FIG. 3a illustrates the format of the short filename direc-
tory entry 18. Each of the fields in the directory entry begins
at a different offset relative to the starting address of the
directory entry. A filename field 22 holds the main portion
(i.e.. the leading 8 characters) of the short filename. As the
main portion of the short filename may hold up to eight
characters of the short filename, the filename field 22 is eight
bytes in length and begins at offset 00h. The filename field
22 is followed by a file extension field 24 at offset 084, The
file extension field holds the characters of the extension of
the short filename. The extension field 24 is three bytes in
length (encoding three characters).

Following the extension field 24 at offset OBh is a file
attributes field 26. The file attributes field 26 includes a
number of bits that. based upon whether the bits are set or
not. specify information about the associated file.

The short filename directory entry 18 also includes a
reserved field 28. The reserved field 28 begins at offset OCh
and is ten bytes in length. The short filename directory entry
18 additionally includes a time of last update field 30 and a
date of last update ficld 32. The time of last update field 30
is two bytes in length and begins at offset 16k. The date of
last update field 32 is two bytes in length and begins at offset
184.

The short filename directory entry 18 includes a begin-
ning disk cluster field 34. The beginning disk cluster field 34
holds a pointer to the section of the memory 16 (FIG. 1)
where the file’s first disk cluster is held (i.e. to the beginning
of the allocation chain for the file). This beginning disk
cluster field 34 (FIG. 3a) is stored at offset 1Ah and is two
bytes in length. A file size field 36 follows the beginning disk
cluster field 34. The file size field 36 holds a value that
specifies the amount of memory occupied by the file asso-
ciated with the short filename directory entry 18. The file
size field 36 is four bytes in length and begins at offset 1Ch.

FIG. 3b illustrates the format used for each of the long
filename directory entries 20. The long filename directory
entry 20 additionally includes a signature ficld 38 that holds
a digital signature. The signature field 38 is useful in
specifying the order of a long filename directory entry 20 in
a sequence of associated long filename directory entries. For
example, a first long filename directory entry includes a
signature field 38 that specifies that it is the first entry. and
each successive long filename directory entry includes a
signature field 38 that specifies where the long filename
directory entry fits in the sequence of long filename direc-
tory entries for a file. The signature field 38 is provided
primarily for use with utility programs that directly access
the file system volume. The signature field 38 is one byte in
length and begins at offset 00Ah. which is the beginning of the
filename field 22 (FIG. 3a) of the short filename directory
entry 18. The signature field 38, given its location in the long
filename directory entry. might easily be mistaken for a
portion of a short filename by certain utility programs.
Hence. the signature field 38 includes only illegal short
filename characters so that the characters may not be readily
changed by systems or utilities that support only short
filenames.

The long filename directory entry 20 includes three fields
40, 48 and 52 that are provided for holding characters of the

10

15

20

25

30

35

45

50

55

65

6

long filename. The first long filename field 40 begins at
offset Olh and may hold up to ten characters of the long
filename (i.e.. it is 10 bytes in length). The second long
filename field 48 begins at offset OEh and may hold up to
twelve characters (i.e.. 12 bytes) of the long filename. Lastly.
the third long filename field 52 begins at offset 1Ch and may
hold up to four characters (i.e.. 4 bytes) of the long filename.
Thus. cumulatively, these three fields 40. 48 and 52 may
hold up to twenty-six characters of the long filename. The
long filename fields 40, 48 and 52 are filled sequentially
beginning with field 40 and then filling ficlds 48 and 52.
consecutively.

While the long filename directory entry 20 differs from
the short filename directory entry 18, the long filename
directory entry 20, nevertheless, includes certain similar
fields at the same specified offsets as were discussed above
for the short filename directory entry 18 (FIG. 3a). As such.
operating systems that do not support long filenames are not
disturbed by the long filename directory entries 20. For
instance, the long filename directory entry 20 includes a file
attributes field 42 which is like the file attributes field 26 (see
FIG. 3a) provided in the short filename directory entry.

The long filename directory entry 20 contains a checksum
field 44. which is one byte in length and at offset 0Dh. The
checksum field 44 holds a checksum of the short filename.
The checksum byte, as will be described in more detail
below, is used to ensure that the long name is valid for the
associated short filename and to act as a pointer to the short
filename directory entry 18 that is helpful to disk utility
programs. A flags field 43 is held at offset OCh. The fiags
field 43 holds a flag bit that may be set when unicode
characters are used. In addition, the beginning disk cluster
field 50 (FIG. 3b) of the long filename directory entry 20 is
analogous to the beginning disk cluster field 34 (FIG. 3a) of
the short filename directory entry 18. However. it always has
a constant value of zero in the long filename directory entry.

The above discussion has focused on how the directory
entries 18 and 20 (FIG. 2) are used to support both long
filenames and short filenames. The discussion below will
focus on how such directory entries are supported by the
preferred embodiment of the present invention.

When a new file is created. the preferred embodiment
must take steps to support both a long filename and a short
filename for the new file. In discussing how the preferred
embodiment supports both long filenames and short
filenames. it is helpful to first focus on the creation of the
directory entries and then to focus on the creation of the
filenames. FIG. 4 is a flowchart depicting the basic steps
performed upon creation of the new file. Initially, the new
file is created (step 54) using either a long filename API or
a short filename APL Both varieties of APIs support the
creation of files. Depending on the type of API that is used
to create the files. the file will initially have a long filename
and/or a short filename. In other words. if a file is created
with a long filename APL it will initially have a long
filename and if a file is created with a short filename APL it
will initially have a short filename, which may also be the
long filename for the file.

At least one long filename directory entry 20 may be
created for the file. First, a determination is made whether a
long filename directory entry 20 is required (step 51). If the
long filename will not correctly fit in the short filename
directory entry 18. a long filename directory entry 20 is
required. Long filename directory entries 20 are dynamically
allocated based upon the number of characters in the long
filename. At a minimum, a short filename directory entry 18

5.758.352

7

will be created that has the format that is shown in FIG. 3a.
Thus. the system checks to see how many long filename
directory entries are needed and allocates space for the short
filename directory entry and as many additional long file-
name directory entries as are required (step 58). It should be
appreciated that when both a short filename directory entry
18 and at least one long filename directory entry 20 are
created. space for both types of directory entries are allo-
cated together at the same time. The long and short filename
directory entries 18 and 20 are then filled in step 59.
However, if no long filename directory entry is required. no
space will be allocated (i.e.. steps 58 and 59 are skipped).

FIG. Sa is a flowchart depicting the steps performed in
filling in a long filename directory entry 20 (see step 59 in
FIG. 4). The steps are shown in a given sequence. but those
skilled in the art will appreciate that the steps need not be
performed in this illustrated sequence. Rather, other
sequences are equally acceptable.

A hidden bit in the file attributes ficld 42 is set to have-a
value of one (step 62). FIG. 5b shows the bits included in the
file attributes field 42. The hidden bit is designated by the
letter “H” in FIG. 5b and is present at bit position 1 in the
file attributes field 42. When the hidden bit is set to a value
of one, the directory entry is hidden and is excluded from
normal searches of the directory entries 18 and 20. By
setting the hidden bit. the long filename directory entries 20
(FIG. 2) are not searched in conventional directory entry
searches. The hidden bit is set so that down level systems
(i.e.. systems that support only short filenames) will not see
the long filename directory entries 20.

A read-only bit is also set in the file attributes field (step
64 in FIG. 5a). The read-only bit is designated by the letter
“R” in FIG. 5b and is present at bit position ¢ in the file
attributes field 42. Setting the read-only bit to a value of one
indicates that the file is a read-only file and any attempts to
write to the file will fail.

A system bit in the file attributes ficld 42 is set to a value
of one (step 66 in FIG. 5a). The system bit is designated by
the letter “S” in FIG. 5b and is present at bit position 2 in the
file attributes field 42. Setting the system bit to a value of one
designates the file as a system file and excludes the directory
entry from normal searches of the directory entries 18 and
20. The setting of the system bit to a value of one hides the
long filename directory entries 20 from down level operating
systems that support only short filenames.

Next, a volume label bit is set in the file attributes field 42
(step 68 in FIG. 8a). The volume label bit is designated by
the letter “V” in FIG. 5b and is present at bit position 3 in
the file attributes field 42. Setting the volume label bit to a
value of one hides the long filename directory entry from
“Check Disk” operations of certain disk utility programs.
For example, MS-DOS. version 5.0 includes a utility named
CHKDSK. The setting of the volume label attribute hides
the long filename directory entries from CHKDSK.

The discussion will now return again to the flowchart of
FIG. 5a. The signature byte ficld 38 (FIG. 3b) is filled with
a digital signature (step 70 in FIG. 5a). As was mentioned
above, the signature distinguishes the order of the long
filename directory entries 20 for the file. The checksum field
44 in FIG. 3b is filled with the appropriate checksum of the
short filename (step 72 in FIG. 5a). The checksum byte field
44 (FIG. 3b) is used to associate the long filename directory
entries 20 with their appropriate short filename by holding a
checksum of the short filename. The beginning disk cluster
field 50 (FIG. 3b) is set to zero (step 74 in FIG. 5a). The long
filename directory entry 20, thus. has no data allocated to it.

10

15

20

25

30

45

50

55

65

8

This helps to make the long filename directory entry invis-
ible in down level systems. Lastly, the bits for the characters
of the long filename are stored in the appropriate long
filename fields 40. 48 and 52 (FIG. 3b) of the long filename
directory entry 20 (step 76 in FIG. 5a).

By setting the file attributes field 42 (FIG. 5b) bits as
described above and by setting the beginning disk cluster
field 50 to zero (FIG. 3b). the preferred embodiment of the
present invention makes the long filename directory entries
nearly invisible to operating systems that support only short
filenames (i.e., down level systems). Nevertheless. files with
long filenames are still permitted in down level operating
systems. The long filename directory entries are not visible
in the directory entry listing for down level systems. The
combination of bit settings in the file attributes field and the
zeroing of the beginning disk cluster field 50 make the long
filename directory entries invisible to down level systems.
Thus, compatibility problems arising from having long
filenames in the down level operating system are minimized.
Moreover, utility programs. that may skew the order of
directory entries, are not a problem. The signature field 40
(FIG. 3b) and the checksum field 44 may be used in
conjunction to rearrange entries that are out of order. In
particular, the checksum fields 44 are used to associate long
filename directory entries 20 with a short filename directory
entry and the signature fields 40 of the long filename
directory entries are used to assign related long filename
directory entries into proper sequence.

The discussion above has noted that filenames are created
using either short filename APIs or long filename APIs. As
a result, when a file is created it has either a long filename
or short filename assigned to it by the user, depending on
whether a long filename API or short filename API is used.
The preferred embodiment of the present invention
described herein automatically creates the missing short
filename or long filename. For instance, if a file is created
using a short filename API, the preferred embodiment
described herein establishes a corresponding long filename
(which is the same as the short filename). Analogously. if a
file is created using a long filename API, the preferred
embodiment generates a corresponding short filename that is
stored in a short filename directory entry 18. FIG. 6a shows
the steps performed by the preferred embodiment when the
short filename is provided by the user. In particular, the user
provides a short filename (step 78 in FIG. 6a). and the short
filename is used as the long filename (step 80). When the
user provides a short filename. the system checks whether
the name is a valid short filename and whether there are any
existing files that pose a conflict (not shown). If there is no
problem in terms of format or conflict, the file is assigned the
provided short filename. The short filename is then used as
the long filename, and there is no long filename directory
entry 20 for the file.

When a file is created using a long filename APL the
resulting creation of a corresponding short filename may be
quite complex. FIG. 6b is a flowchart illustrating the steps
performed to create the short filename in such an instance.
Initially. the long filename is provided by the user (step 82
in FIG. 6b). The preferred embodiment then checks whether
the long filename is a valid short filename (step 84). If the
long filename is a valid short filename, the long filename is
used as the short filename (step 86).

However, if the long filename does not qualify as a valid
short filename. a short filename is created by removing the
spaces from the long filename and using the resulting
characters as a proposed short filename (step 88). Initial
periods. trailing periods and extra periods that are prior to

5.758.352

9

the last embedded period are then removed from the pro-
posed short filename (step 90). Furthermore. any illegal
short filename character is translated into an underscore
(step 92). A check of whether the proposed short filename
contains an extension is then performed (step 94). If the
proposed short filename contains an extension. the leading
main portion of the filename is truncated to six characters in
length, and the leading three characters of the extension are
used (step 96). Subsequently, a “~1” is appended to the
leading portion of the remaining characters (step 98) to serve
as the short filename.

If the modified long filename does not contain an exten-
sion (step 94). the long filename is truncated to six charac-
ters (step 100). and “~1” is appended to the truncated
filename (step 102) to serve as the short filename. In both of
the above-described instances (i.e.. the “yes” instance and
“po” instance of step 94). the preferred embodiment next
checks whether the proposed short filename collides with
any other short filename (step 104). If the proposed short
filename does not collide with another short filename (i.e..
there is no other identical short filename). the proposed short
filename is assigned as the short filename for the file (step
112). In the case where the proposed short filename collides
with another short filename, the characters that are appended
to the name are incremented by one (step 106). Thus, if the
number value is initially “~1”, the number value is incre-
mented in step 106 by one to “~2”. The preferred embodi-
ment checks whether the new proposed short filename
exceeds eight characters in length (step 108). If the new
proposed short filename does not exceed eight characters in
length. the checking of whether the proposed short filename
collides with another short filename is repeated (step 104).
When the number of characters in the filename exceeds eight
characters in length. the new short filename is shortened to
eight characters (step 110). In particular. if the length of the
leading portion of the filename (ignoring the extension) plus
the tilda and the number exceeds eight characters. the
leading portion of the filename is shortened until the new
proposed short filename (absent the extension) fits in eight
characters. For example. the filename “MonKey~10.EXE”
is shortened to ‘MonKe~10.EXE.” The above-described
steps 104. 106, 108 and 110 are repeated until a short
filename is created for the file that is of proper length and
that does not collide with another short filename.

The preferred embodiment of the present invention pro-
vides a solution to the problem of short filenames while
minimizing the compatibility impact of the solution. The use
of a common name space that provides a long filename and
a short filename for each file allows the files to be used both
with applications that support short filenames and applica-
tions that support long filenames.

While the present invention has been described with
reference to a preferred embodiment thereof, those skilled in
the art will appreciate that various changes in scope and
form may be made without departing from the present
invention as defined in the appended claims.

We claim:

1. In a computer system having a storage. a directory
service for accessing directory entries and a file system that
uses the directory entries to access files. a method. compris-
ing the computer-implemented steps of:

(a) creating a first directory entry for a file wherein the
first directory holds a short filename for the file and the
location of the file;

(b) creating a second directory entry for the file wherein
the second directory entry holds at least one portion of

15

20

25

30

35

45

55

65

10

a long filename having a fixed number of characters
and a signature that identifics that the second directory
entry holds a first portion of the long filename;

(c) storing the first directory entry and the second direc-
tory entry on the storage among the directory entries
used by the directory service; (d) accessing the second
directory entry by the directory service to access the
file; and (e) creating and storing in the storage a
sequence of at least one additional directory entry for
holding a next sequential portion of the long filename.

2. The method as recited in claim 1 wherein the long
filename contains more characters than the short filename.

3. The method as recited in claim 1 wherein each addi-
tional directory entry may hold only a fixed number of
characters of the long filename and how many additional
directory entries are created is dictated by how many addi-
tional directory entries are required to store characters of the
long filename which are not already stored in the second
directory entry.

4. The method as recited in claim 1 wherein the step of
creating at least one additional directory entry for the long
filename further comprises the step of creating a plurality of
additional directory entries.

S. The method as recited in claim 1 wherein the step of
creating at least one additional directory entry for the long
filename further comprises the step of providing a signature
in each additional directory entry that identifies which
portion of the long filename the additional directory entry
holds.

6. The method as recited in claim 1 wherein the step of
creating at least one additional directory entry for the long
filename further comprises the step of providing a checksum
of the first filename in each additional directory entry.

7. In a data processing system having a processor running
an operating system and a memory means having memory
locations wherein the operating system is stored in the
memory means, a method, comprising the steps of:

(a) storing in a first of the memory locations of the
memory means a first directory entry for a file wherein
the first directory entry holds a short filename for the
file. said short filename including at most a maximum
number of characters that is permissible by an appli-
cation program;

(b) storing in a second of the memory locations of the
memory means that is adjacent to the first of the
memory locations a second directory entry for the file
wherein the second directory entry holds at least a first
portion of a long filename for the file, said long
filename including a greater number of characters than
the maximum number of characters that is permissible
by the application program. and

(c) accessing one of the directory entries to locate the file.

8. The method as recited in claim 7 wherein the step of
storing the second directory further comprises the step of
storing a checksum of the short filename in the second
directory entry.

9. The method as recited in claim 7. further comprising
the step of storing at least one additional directory entry
holding a next portion of the long filename in the memory
means.

10. The method as recited in claim 9 wherein the step of
storing at least one additional directory entry further com-
prises the step of storing a checksum of the short filename
in the additional directory entry.

11. The method as recited in claim 9 wherein the step of
storing at least one additional directory entry further com-
prises the step of storing a signature that uniquely identifies

5.758.352

11

which portion of the long filename is stored in the additional
directory entry.

12. In a computer system having a storage, a directory
service for accessing directory entries and a file system that
uses the directory entries to access files. a comnputer-
readable medium holding computer-executable instructions
for performing a method comprising computer-
implementented steps of:

(a) creating a first directry entry for a file wherein the first
directory holds a short filename for the file and the
location of the file;

(b) creating a second directory entry for the file wherein
the second directory entry holds at least one portion of
a long filename having a fixed number of characters;

(c) storing the first directory entry and the second direc-
tory entry on the storag among the directory entries
used by the directory service; and

(d) accessing the second directory entry by the directory
service to access the file.

13. The computer-readable medium of claim 12 wherein
the long filename contains more characters than the short
filename.

14. The computer-readable medium of claim 12 aiso
holding computer-executable instructions for creating and
storing in the storage a sequence of at least one additional
directory entry for holding a next sequential portion of the
long filename.

15. The computer-readable medium of claim 14 wherein
each additional directory entry may hold only a fixed
number of characters of the long filename and how many
additional directory entries are created is dictated by how
many additional directory entries are required to store char-
acters of the long filename which are not already stored in
the second directory entry.

16. The computer-readable medium of claim 14 wherein
the step of creating at least one additional directory entry for
the long filename further comprises the step of creating a
plurality of additional directory entries.

17. The computer-readable medium of clain 14 wherein
the step of creating the second directory entry further
comprises the step of providing a signature in the second
directory entry that identifies that the second directory entry
holds the first portion of the long file name.

18. The computer-readable medium of claim 17 wherein
the step of creating at least one additional directory entry for
the long filename further comprises the step of providing a
signature in each additional directory entry that identifies
which portion of the long filename the additional directory
entry holds.

19. The computer-readable medium of claim 14 wherein
the step of creating at least one additional directory entry for
the long filename further comprises the step of providing a
checksum of the first filename in each additional directory
entry.

20. In a data processing system having a processor
running an operating system and a memory means with
memory locations. wherein said memory means stores the
operating system, a computer-readable medium holding
computer-executable instructions for performing a method
comprising the steps of:

(a) storing in a first of the memory locations of the
memory means a first directory entry for a file wherein
the first directory entry holds a short filename for the
file. said short filename including at most a maximum
number of characters that is permissible by an appli-
cation program;

15

20

25

30

35

40

45

50

55

65

12

(b) storing in a second of the memory locations of the
memory means that is adjacent to the first of the
memory locations a second directory entry for the file
wherein the second directory entry holds at least a first
portion of a long filename for the file, said long
filename including a greater number of characters than
the maximum number of characters that is permissible
by the application program; and

(c) accessing one of the directory entries to locate the file.

21. The computer-readable medium of claim 20 wherein
a checksum of the short filename is stored in the second
directory entry.

22. The computer-readable medium of claim 20 wherein
at least one additional directory entry is stored to hold a next
portion of the long filename in the memory means.

23. The computer-readable medium of clain 22 wherein a
signature is stored in the additional directory entry that
uniquely identifies which portion of the long filename is
stored in the additional directory entry.

24. In a computer system having a directory service for
accessing directory entries and a file system that uses the
directory entries to access files, a method comprising the
computer-implemented steps of:

(a) creating a first directory entry for a file wherein the
first directory entry holds a short filename for the file
and the location of the file.

(b) creating a second directory entry for a file wherein the
second directory entry is configured to appear as if it
holds a short filename to a program that uses only short
filenames and wherein the second directory entry holds
at least one portion of a long filename for the file, said
long filename having more characters then the short
filename; and

(c) accessing one of the first directory entries and the
second directory entry by the directory service in order
to access the file.

25. The method of claim 24 wherein the program that uses

only short filenames is an operating system.

26. The method of claim 24 wherein the program that uses
only short filenames is an application program.

27. The method of clain 24 wherein the storage includes
storage locations and wherein the first directory entry and
the second directory entry are stored in adjacent storage
locations.

28. In a computer system having a directory device for
accessing directory entries and a file system that uses the
directory entries to access files, a computer-readable
medium holding computer-executable instructions for
executing a method comprising the computer-implemented
steps of:

(a) creating a first directory emtry for a file wherein the
first directory entry holds a short filename for the file
and the location of the file;

(b) creating a second directory entry for a file wherein the
second directory entry is configured to appear as if it
holds a short filename to a program that uses only short
filenames and wherein the second directory entry holds
at least one portion of a long filename for the file. said
long filename having more characters then the short
filename; and

(c) accessing one of the first directory entries and the
second directory entry by the directory service in order
to access the file.

L I T I

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5.758,352 Page 1 of 2
DATED © May 26, 1998
INVENTOR(S) :

AR. Reynolds et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

TLTLE PAGE, ITEM LINE

[56] Refs. Cited "sharing" should read --Sharing--
(Other Pubs.,
Item 4)
[56] Refs. Cited "1988" should read --1989--
(Other Pubs.,
Item 5)
[56] Refs. Cited after "Duncan” insert --,--
(Other Pubs.,
COLUMN Item 8)
10 6 after "service;" insert paragraph return
(Claim 1, line 15)
10 8 after "file; and" insert paragraph return
(Claim 1, line 17)
10 51 “program," should read --program;--
(Claim 7, line 18)
11 8 “"implementented” should read --implemented--
(Claim 12, line 6)
11 9 “directry" should read --directory--
(Claim 12, line 7)
11 16 "storag" should read --storage--

(Claim 12, line 14)

11 43 *file name" should read --filename--
(Claim 17, line 5)

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,758,352 ress 2ot
DATED : May 26, 1998
INVENTOR(S) : AR Reynolds et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

COLUMN LINE

12 16 *clain"” shquld read --claim--
(Claim 23, line 1)

12 27 " " should read --;--
(Claim 24, line 7)

12 33 "then" should read --than--
(Claim 24, line 13)

12 42 "clain" should read --claim--
(Claim 27, line 1)

12 60 "then" should read --than--

(Claim 28, line 15)

Signed and Sealed this
Twenty-ninth Day of September, 1998

Attest: 6@« %{,\

BRUCE LEHMAN

Attesting Officer Commissioner of Patents and Trademarks

US005758352C1

12y EX PARTE REEXAMINATION CERTIFICATE (5551st)

United States Patent
Reynolds et al.

US 5,758,352 C1
*QOct. 10, 2006

(10) Number:
45) Certificate Issued:

(54) COMMON NAME SPACE FOR LONG AND
SHORT FILENAMES

(75) Inventors: Aaron R. Reynolds, Redmond, WA
(US); Dennis R. Adler, Mercer Island,
WA (US); Ralph A. Lipe, Woodinville,
WA (US); Ray D. Pedrizetti, Issaquah,
WA (US); Jeffrey T. Parsons,
Redmond, WA (US); Rasipuram V.
Arun, Redmond, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

Reexamination Request:
No. 90/007,372, Jan. 8, 2005

Reexamination Certificate for:

Patent No.: 5,758,352
Issued: May 26, 1998
Appl. No.: 08/711,692
Filed: Sep. 5, 1996
(*) Notice: This patent is subject to a terminal dis-

claimer.
Certificate of Correction issued Sep. 29, 1998.
Related U.S. Application Data

(63) Continuation of application No. 08/427,004, filed on Apr.
24, 1995, now Pat. No. 5,579,517, which is a continuation
of application No. 08/041,497, filed on Apr. 1, 1993, now

abandoned.
(51) Imt. CL

GO6F 12/00 (2006.01)

GO6F 17/30 (2006.01)
(52) US.CL .o 707/200, 707/1; 707/6
(58) Field of Classification Search 707/1,

707/6, 200
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,058,672 A * 11/1977 Crager et al. 370/394
4,780,821 A 10/1988 Crossleyccoeeeeveunnnnne 718/100
4,945,475 A 7/1990 Bruffey et al. 707/1
4,945,476 A 7/1990 Bodick et al. 600/301
4,987,531 A 1/1991 Nishikado et al. 707/200
4,999,766 A 3/1991 Peters et al.oueeeeneee 707/10
5,058,000 A 10/1991 Cox et al. ...cceevennnnnnnn. 707/10
(Continued)
FOREIGN PATENT DOCUMENTS

EP 0462 587 Bl 12/1996

EP 0 578 205 Bl 3/2000

EP 0618 540 Bl 12/2001

Jp 64-41039 2/1989

Jp 1315 843 12/1989

Jp 2 148 341 7/1990

Jp 4-297 934 10/1992

Jp 6 019 763 1/1994

OTHER PUBLICATIONS

Manes, S. “Taking a Gamble with WordVision”, PC Maga-
zine, vol. 3, No. 6, pp. 211-221, Apr. 3, 1984.*

Jeffries, R. “What’s Ahead for DOS”, PC Magazine, vol. 4,
No. 24, pp. 95-97, Nov. 26, 1985.*

(Continued)
Primary Examiner—Luke S Wassum
57 ABSTRACT

An operating system provides a common name space for
both long filenames and short filenames. In this common
namespace, a long filename and a short filename are pro-
vided for each file. Each file has a short filename directory
entry and may have at least one long filename directory entry
associated with it. The number of long filename directory
entries that are associated with a file depends on the number
of characters in the long filename of the file. The long
filename directory entries are configured to minimize com-
patibility problems with existing installed program bases.

Offset
00
Filename 22
08h|
File Extension . 24
OBh|
File Attribuie .26
0CH|
Reserved 28
16h)
Time of Last Update . 30
1%h]
Date of Last Update .32
1A
Beginning Disk Cluster - 34
1Chl
File Size .36
204! »

US 5,758,352 C1
Page 2

U.S. PATENT DOCUMENTS

5,083,264
5,129,088

1/1992 Platteter et al. 714/5
7/1992 Auslander et al. 711/1

5,745,902 4/1998 Miller et al. 707/200

A
A
5,179,703 A 1/1993 Evans 717/122
5,202,982 A 4/1993 Gramlich et al. 707/2
5,202,983 A 4/1993 Orita et al.cceeennvnnenn 707/4
5,287,502 A 2/1994 Kanekoccccoevvreerennnn. 707/4
5,291,595 A 3/1994 Martins 707/200
5,307,494 A * 4/1994 Yasumatsu et al. 707/200
5,313,646 A 5/1994 Hendricks et al. 707/101
5,317,733 A 5/1994 Murdockcceeveennnnnn 707/203
5,329,427 A 7/1994 Hogdahlcccceuuee 361/730
5,355,497 A * 10/1994 Cohen-Levy 707/200
5,359,724 A 10/1994 Earle ...oovevvveveeeeenennnn, 707/205
5,359,725 A 10/1994 Garcia et al. 707/200
5,363,487 A 11/1994 Willman et al. 710/8
5,367,671 A 11/1994 Feigenbaum et al. 707/1
5,371,885 A 12/1994 Letwin ...coceeeeeeeerennnne 707/205
5,388,257 A 2/1995 Bauercccocevvveereennnn. 707/1
5,412,808 A 5/1995 BAauerc.ccceveeveeeererennnns 707/1
5,421,001 A 5/1995 Methe ...cvvvvvveerereenennnnns 707/1
5,434,974 A 7/1995 Loucks et al. 707/101
5,437,029 A 7/1995 Sinhacccocvvvvvrereennn. 707/200
5,483,652 A 1/1996 Sudama et al. 707/10
5,485,606 A 1/1996 Midgdey et al. ... 707/10
5,535,375 A 7/1996 Eshel et al. 703/27
5,537,592 A 7/1996 King et al. 707/200
5,596,755 A 1/1997 Pletcher et al. 710/261
5,627,996 A 5/1997 Bauer 703/20
5,694,606 A 12/1997 Pletcher et al. 710/261
5,745,752 A 4/1998 Hurvig et al. 707/200
A
5,754,848 A 5/1998 Hanesccccoeeeennnne 707/200
5,758,352 A 5/1998 Reynolds et al. 707/200
5,761,675 A * 6/1998 Isenbergcccoeuuee.. 707/200
5,765,169 A 6/1998 Connercccvvvevenenn. 707/200
5,819,275 A 10/1998 Badger et al. 707/100
5,926,805 A 7/1999 Hurvig et al. ..ccocceeeenee 707/2
6,055,527 A 4/2000 Badger et al.c.cc...... 707/2

OTHER PUBLICATIONS

Prosise, J. “Retrofitting a DOS System”, PC Magazine, vol.
5, No. 21, pp. 303-313, Dec. 9, 1986.*

Sanders, S.L., ed. “The $R/O Read Only”, Jun. 1987.*
Wendin Inc. “Wendin to Release Wendin—DOS in Septem-
ber”, PR Newswire Press Release, Aug. 28, 1987.%*
Mefford, M.J. “Adding Notes to Directories”, PC Magazine,
vol. 6, No. 15, pp. 385394, Sep. 15, 1987.*

Petzold, C. “OS-2: A New Beginning for PC Applications”,
PC Magazine, vol. 7, No. 7, pp. 273-281, Apr. 12, 1988.*
Digital Research Inc. “Digital Research Introduces POM-
able, Single-User DOS—Compatible Operating System”,
Press Release, Jun. 8, 1988.*

Derfler, F.J. Jr. “Building Workgroup Solutions: AppleTalk”,
PC Magazine, vol. 7, No. 22, pp. 151-160, Dec. 27, 1988.*
World Software Corporation “Extend—A-Name: The 60
Character File Name Utility”, User’s Guide and Reference
Manual, 1988.*

Duncan, R. “Comparing DOS and OS-2 File Systems”, PC
Magazine, vol. 8, No. 3, pp. 321-327, Feb. 14, 1989.*
Duncan, R. “Design Goals and Implementation of the New
High Performance File System”, Microsoft Systems Journal,
pp- 1-13, Sep. 1989.%*

Bonner, P. “What’s In a Name?”, PC Computing, vol. 2, No.
9, pp. 169-170, Sep. 1989.*

Gralla, P. “Factors Impeding the OS/2 Operating System”,
PC Computing, vol. 2, No. 12, p. 13, Dec. 1989.*

Greenberg, R.M. “Compress and Expand the Files on Your
Hard Disk Automatically”, PC Magazine, vol. 8, No. 21, pp.
299-310, Dec. 12, 1989.*

Petzold, C. “1989: The Year in Operating Systems”, PC
Magazine, vol. 9, No. 1, p. 172, Jan. 16, 1990.*

Duncan, R. “Getting Acquainted with the Latest Version of
0S/2: 1.2 (Part 1)”, PC Magazine, vol. 9, No. 6, pp.
343-346, Mar. 27, 1990.*

Duncan, R. “Getting Acquainted with the Latest Version of
08S/2: 1.2 (Part 2)”, PC Magazine, vol. 9, No. 7, pp.
317-321, Apr. 10, 1990.*

Duncan, R. “Using Long Filenames and Extended Attributes
(Part 1)”, PC Magazine, vol. 9, No. 8, pp. 317-323, Apr. 24,
1990.*

McCormick, J. “Presentation Manager Under OS/2 Encour-
ages Lengthy Name-Calling”, Government Computer
News, vol. 9, No. 10, pp. 16-17, May 14, 1990.*
Duncan, R. “Using Long Filenames and Extended Attributes
(Part 2)”, PC Magazine, vol. 9, No. 9, pp. 305-309, May 15,
1990.*

Winship, S. “DOS Shells”, PC Week, vol. 7, No. 25, p. 128,
Jun. 25, 1990.*

Neuhaus, T. “Databases”, PC Magazine, vol. 9, No. 12, pp.
435-437, Jun. 26, 1990.*

Jackson, P. “Apple Talk: The Need for Coexistence Between
Apple Macintosh and the IBM PC”, PC User, No. 145, p.
171, Nov. 7, 1990.*

Bonner, P. “GeoWorks Ensemble is a One-Size-Fits—All
GUI”, PC Computing, vol. 3, No. 12, pp. 45-46, Dec.
1990.*

Acerson, K.L.. “WordPerfect® 5.1: The Complete Refer-
ence”, Berkeley:Osborne McGraw-Hill, pp. 272-278,
593-595, 612-615, 1246. ISBN 0-07-881634-3.
752.5.W65A26 1990.*

“CD-ROM: Rock Ridge Group Submits Preliminary
CD-ROM Specs to NIST”, EDGE: Work—Group Comput-
ing Report, vol. 2, No. 44, Mar. 25, 1991.*

Rock Ridge Technical Working Group Rock Ridge Inter-
change Protocol Version 1, Rev. 1.09, Jul. 24, 1991.*
Hayes, F. “Making CD-ROM Usable for UNIX”, Unix
World, vol. VIII, No. 7, p. 123, Jul. 1991.*

Somerson, P. “DOS 5.0: Microsoft Corporation’s Improved
Operating System”, PC Computing, vol. 4, No. 7, pp.
97-113, Jul. 1991.*

Rizzo, J. “Disks of a Different Color: Running MSDOS
Disks on an Apple Macintosh”, MacUser, vol. 7, No. 8, pp.
231-234, Aug. 1991.*

Simon, Barry “What Do You Do To Overcome Disk Disas-
ters”, PC Magazine, vol. 10, No. 15, pp. 409414, Sep. 10,
1991.*

Chin, C. “Using Unused Bytes in Directory Entry?”, excerpt
from comp.os.msdos.programmer newsgroup thread, Oct.
14, 1991.*

Proteo Technology “Proteo Technology Announces Way
You Work New PC Productivity Software That Lets People
Master Their PCs Without Knowing DOS”, Press Release,
Oct. 21, 1991.*

Young, A. “The CD-ROM Standards Frontier: Rock Ridge”,
CD-ROM Professional, vol. 4, No. 6, pp. 53-56, Nowv.
1991.*

Zelnick, N. “Way You Work Does It Your Way”, PC Maga-
zine, vol. 10, No. 22, pp. 62-63, Dec. 31, 1991.*

Bonner, P. “Build a Document Manager Under Windows”,
PC Computing, vol. 4, No. 12, pp. 275-281, Dec. 1991.*

US 5,758,352 C1
Page 3

Hotch, R. “Will This Be The Way You Work?”, Nation’s
Business, Mar. 1992 *

Prosise, J. “Tutor”, PC Magazine, vol. 11, No. 5, pp.
397-399, Mar. 17, 1992.*

Bonner, P. “Windows 3.1: Faster and Smarter”, PC Com-
puting, vol. 5, No. 5, pp. 128-139, May 1992.*

Smith, G. “O8/2 2.0 Does the Job”, PC Computing, vol. 5,
No. 5, pp. 48-55, May 1992.*

Busch, D.D. “4DOS: DOS As You Like It”, Computer
Shopper, vol. 12, No. 7, pp. 698699, Jul. 1992.*

Gralla, P. “Shareware”, Computer Shopper, vol. 12, No. 9,
pp. 701-703, Sep. 1992.*

Somerson, P. “Spy—Proof Your PC: 13 Igenious Ways to
Keep Your System Secure”, PC Computing, vol. 5, No. 9,
pp. 218-237, Sep. 1992.*

Ruley, J.D. “Feature-Rich Beta at a Bargain Price”, Win-
dows Magazine, Oct. 1, 1992.*

Giovetti, A.C. “Way You Work: Personal Office”, Compute!,
Issue 146, p. 126, Nov. 1992.*

Rohan, R. “Golden Retriever Fetches Files in Windows”,
Computer Shopper, vol. 12, No. 11, p. 947, Nov. 1992.*
Microsoft Chicago Long Filename Specification, Revision
0.5, Dec. 4, 1992.*

Goh, S. “MS DOS 6.0, excerpt of a comp.os.msdos.misc
newsgroup thread, Feb. 20, 1993 .*

“Access Review Too Harsh”, Letters Column, Windows
Magazine, No. 403, p. 18, Mar. 1, 1993.*

Maird, M.K. “What are the Benefits of 4DOS?”, excerpt of
a comp.os.msdos.4dos newsgroup thread, Mar. 7, 1993.%*
Above Software, “Above Software Introduces Golden
Retriever 2.0b”, Press Release, Mar. 29, 1993.*

O’Malley, C. “Fetching Desktop Files: Standalone Docu-
ment Managers”, Windows Sources, vol. 1, No. 2, p. 443,
Mar. 1993.*

Fowler, D. “Cross Talking: Sharing Files Over a Mixed—
Platform Network”, Computer Shopper, vol. 13, No. 3, pp.
783-785, Mar. 1993.*

Berst, J. “Come Closer and I’1l Tell You Some Secrets About
Windows 4.0”, Windows Magazine, No. 404, p. 43, Apr. 1,
1993.*

Mallory, J. “Breakthrough on DOS Filename Limits”,
Newsbytes, Apr. 12, 1993 .*

Almax Software “Longer Filenames for DOS”, Press
Release, May 1993.*

Rettig, H. “Custom Windows Made Easy”, Windows Maga-
zine, No. 406, p. 264, Jun. 1, 1993.*

Capen, T. “The Ultimate File Manager”, Corporate Com-
puting, vol. 2, No. 6, p. 54, Jun. 1993.*

Lincoln, S. “Death to 8+3 Filenames!”, excerpt from a
comp.os.ms—windows.apps newsgroup thread, Jul. 9,
1993.*

Lewallen, D., F. Scot and E. Bott “The NT Desktop—Like
Windows, Only Better”, PC Computing, vol. 6, No. 7, pp.
124-127, Jul. 1993.*

Nilsson, B.A. “Sherlock Solves the Case of the Cryptic
Windows Filenames”, Computer Shopper, vol. 13, No. 7, p.
434, Jul. 1993.*

2010 Software “Sherlock 2.0 Released by 2010 Software”,
Press Release, Aug. 9, 1993.*

Clark, I.M. “Proposed DOS Header Record”, excerpt from
comp.os.msdos.programmer newsgroup thread, Aug. 11,
1993.*

Allen, I. et al. “The Vices and Virtues of MS-DOS”, PC
Computing, vol. 6, No. 8, pp. 27-31, Aug. 1993.*

Wagner, M. “Developers to Get Tour of ‘Chicago’—New
Microsoft OS”, Open Systems Today, No. 136, p. 3, Nov. 8,
1993 .*

Idol, C. “Sherlock”, Compute, vol. 15, No. 11, p. 150, Nov.
1993 .*

DeVoney, C. and R.C. Kennedy “NT Has Arrived”, Win-
dows Sources, vol. 1, No. 10, pp. 283-294, Nov. 1993.*
Davis, F.E. “NT, No Thanks; Wait for 4.0”, Windows
Sources, vol. 1, No. 10, pp. 105-106, Nov. 1993 .*
Mathisen, T. “Novell’s DOS 7 Offers Multitasking, Memory
Management, and Peer—To-Peer Networking, Is it a Better
DOS Than Microsoft’s?”, Byte Magazine, Jun. 1994.%*
Olsen, M. “Student Writes Free Version of DOS”, University
of Wisconsin at River Falls Student Voice, Dec. 1, 1994 .*
Saiedian, H. and M. Siddiqi “A Framework for the Assess-
ment of Operating Systems for Small Computers”, ACM
SIGICE Bulletin, vol. 21, No. 4, pp. 2-27, Apr. 1996.*
Cluts, N.W. “Making Room for Long Filenames”, Microsoft
Developer Network Technology Team, downloaded from
msdn.microsoft.com/library/en—us/dnfiles/html/msdn__
longfile.asp?frame=true, Aug. 1996.*

Styer, E. “Disks”, ACM SIGICE Bulletin, vol. 23, No. 1, pp.
22-32, Jul. 1997 *

vinDaci “Long Filename Specification”, downloaded from
home.teleport.com/~brainy/lfn.htm, Jan. 6, 1998.*

Mattias “25 Years of DR DOS History”, downloaded from
freedos.sourceforge.net/freedos/news/bits/drdos—hist.txt,
Sep. 18, 2000.*

The PC Guide “File Allocation Tables”, downloaded from
www.pcguide.com/ref’/hdd/file, Apr. 17, 2001.*
Tanenbaum, A.S. “Modern Operating Systems”, Upper
Saddle River:Prentice Hall, pp. 430-447, 2001 .*

Hall, J. “An Overview of FreeDOS”, downloaded from
freedos.sourceforge.net/freedos/news/bits/article fsm.txt,
2002.*

Beta Systems “DOS History”, downloaded from www.pow-
ernet.co.za/info/DOS/His.Htm, Apr. 30 2003.*

Fuchs, C. “DOS Frequently Asked Questions”, downloaded
from www.drdos.new/faq, Jan. 1, 2004.*

jh “20 Years of DOS History”, downloaded from freedos.
sourceforge,net/freedos/news/bits/doshist.txt, Mar. 25,
2005.%*

Wikipedia “Comparison of File Systems”, downloaded from
www.wikipedia.org, Aug. 29, 2005.*

Wikipedia “DOS”, downloaded from www.wikipedia.org,
Sep. 15, 2005.*

Bonner, Paul, “What’s in a Name?,” Sep. 1988, PC—Com-
puting, vol. 2,(9), p. 169(2).

Bonner, Paul, “Build a Document Manager Under Win-
dows,” Dec. 1991, PC—Computing, vol. 4(12), p. 275-277,
280-283.

Comer, D. et al., “The Tilde File Naming Scheme” IEEFE 6th
International Conference on Distributed Computing Sys-
tems, Cambridge, Massachusetts, May 23, 1986, pp.
509-514.

William M. Crow, “Encapsulation of Applications in the
New Wave Environment,” Hewlett—Packard Journal, Aug.
1989, 40(4), p. 57-64.

Ray Duncan, “Design Goals and Implementation of the New
High Performance File System” Microsoft Systems Journal,
Sep. 1989, 4(5), pp. 1-13.

Ray Duncan, “Using Long Filenames and Extended
Attributes” Parts 1 & 2, PC Magazine, Apr. 24 & May 15,
1990, 9(8,9), pp. 317-323 & 305-309.

US 5,758,352 C1
Page 4

Les Freed, “High-End PC—to-MAC LAN Solutions”, PC
Magazine, May 1992, 11(9), p. 203(8).

Glass, Brett, “Create Your Own Environment,” PC-Com-
puting, Oct. 1990, 3(10), 106-111.

Hurwicz, Mike, “MS-DOS 3.1 Makes It Easy to Use IBM
PCs on a Network,” Data Communications, Nov. 1985,
223-237.

Mallory, Jim, “Breakthrough on DOS Filename Limits,”
Newsbytes News Network, Apr. 12, 1993, 3 pages.
McCormick, John, “Presentation Manager Under OS/2
Encourages Lengthy Name—Calling,” Government Com-
puter News, May 14, 1990, 9(10), p. 16(2).

O’Malley, Chris, “Fetching Desktop Files: Standalone
Document Managers,” Window Sources, Mar. 1993, 1(2), p.
443(1).

Rohan, Rebecca, “Golden Retriever Fetches Files in Win-
dows,” Computer Shopper, Nov. 1992, 12(11), p. 947(1).
Samuel J. Leffler et al., “The Design and Implementation of
the 4.3 BSD UNIX Operating System,” Addison—Wesley
Publishing Company 1989, Chapter 2, pp. 34-36.

Trivette, Donald B., “Utility Provides 60—Character Filena-
mes,” PC Magazine, Sep. 1988, 7(16), p. 56(1).

Wang, Y.E.G., “Universal File Names for Ada,” Ada Letters,
Jan./Feb. 1990, Integrated Software, Inc., New York, NY,
vol. X(1), pp. 111-117.

“The Intelligent Way to Search,” Oct. 1987, News Release,
Dateline: Burlington, MA.

“File sharing Protocol,” Microsoft Corporation, Nov. 7,
1988, 71 pages.

“World Software Corporation (WSC) Launches Extend—
A-Name in Europe,” Computer Product Update, Jul. 27,
1990.

“Above Software Introduces Golden Retriever 2.0b',” News
Release, Dateline: Irvine, CA, Mar. 29, 1993.

Len, A'F. et al.,“New Improved Windows,” PC World, Dec.
1993, 11(12), p. 252(3).

Mark G. Sobell , “A Practical Guide to the Unix System,”
Dec. 1989, System V Release 3 and BSD 4.3, pp. 12-14, 32,
6669, 82-83 and 88-89.

“Appendix C How Filenames Are Converted,” Microsoft
LAN Manager Services for Macintosh Administrator’s
Guide, Jun. 1991, Version 1.0, for Microsoft Operating
System/2, Microsoft Corporation, pp. 119-123.

“Long Filename Specification”, Hardware White Paper,
Designing Hardware for Microsoft® Operating Systems,
Microsoft Corporation, Dec. 4, 1992, version 0.5, http://
www.psdever.net/documents/lonfilename.pdf?theid=39, 19

pages.

Protest to Patent Application No. Canadian Patent Applica-
tion No. 2,120,461, In The Canadian Patent Office, Submis-
sion under Section 34.1, filing of Prior Art, Sep. 24, 2004, 13
pages.

In the United States Patent and Trademark Office, In re

Reexamination of 5,579,517, Declaration of Annie Pearson,
Dec. 1, 2004, 2 pages.

Translation into English of Plaintiff’s Grounds for Nullity,
Dr. Friedrich—Karl Boese v. Microsoft Corporation, Dec.
21, 2004, 1-25.

Merkmalsanalyse Anspruch 1, Exhibit 5 of Reference 76, 1
page.

Merkmalsanalyse Anspruch 12, Exhibit 6 of Reference 76,
1 page.

Article from Newsgroup comp.archives, Exhibit 7a of Ref-
erence 27, Aug. 21, 1992, 1 page.

Article from Newsgroup comp.std.misc, Exhibit 7b of Ref-
erence 27, Mar. 21, 1991, 3 pages.

Article from Newsgroup comp.new.prod, Exhibit 7¢ of
Reference 27, Aug. 20, 1991, 1 page.

Article from Newsgroup comp.unix.bsd and comp.os.linux,
Exhibit 7d of Reference 27, Dec. 12, 1992, 1 page.

Response to Official Communication re: EP Application No.
94 105 169.0-2201 dated May 10, 2000, Exhibit 14 of
Reference 76, 9 pages.

“Common Name Space for Long and Short Filenames,”
Microsoft Corporation, Exhibit 15 of Reference 76, 34

pages.
Communication Under Rule 51(4) EPC re: EP Application

No. 94 105 169.0-2201, Dec. 19, 2000, Exhibit 16 of
Reference 76, 39 pages.

Rock Ridge Interchange Protocol, Version 1, AN ISO
9660:1988 Compliant Approach to Providing Adequate
CD-ROM Support for POSIX File System Semantics; Rock
Ridge Technical Working Group, Revision 1.09, Jul. 24,
1991.

“Rock Ridge Group Submits Preliminary CD-ROM Specs
To NIST—Sixteen Companies Offer Their Support” The
Florida SunFlash, vol. 27 #11, Mar. 1991.

* cited by examiner

US 5,758,352 C1

1
EX PARTE
REEXAMINATION CERTIFICATE
ISSUED UNDER 35 U.S.C. 307

THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW.

Matter enclosed in heavy brackets [] appeared in the
patent, but has been deleted and is no longer a part of the
patent; matter printed in italics indicates additions made
to the patent.

AS A RESULT OF REEXAMINATION, IT HAS BEEN
DETERMINED THAT:

The patentability of claims 24-28 is confirmed.
Claims 9, 14 and 22 are cancelled.

Claims 1, 7, 8, 10-12, 15-17, 19-21 and 23 are deter-
mined to be patentable as amended.

Claims 26, 13 and 18, dependent on an amended claim,
are determined to be patentable.

New claims 29-44 are added and determined to be
patentable.

1. In a computer system having a storage, a directory
service for accessing directory entries and a file system that
uses the directory entries to access files, a method, compris-
ing the computer-implemented steps of:

(a) creating a first directory entry for a file wherein the
first directory entry holds a short filename for the file
and the location of the file;

(b) creating a second directory entry for the file wherein
the second directory entry holds at least one portion of
a long filename having a fixed number of characters
and a signature that identifies that the second directory
entry holds a first portion of the long filename;

(c) storing the first directory entry and the second direc-
tory entry on the storage among the directory entries
used by the directory service;

(d) accessing the second directory entry by the directory
service to access the file; and

(e) creating and storing in the storage a sequence of at
least one additional directory entry for holding a next
sequential portion of the long filename.

7. In a data processing system having a processor running
an operating system and a memory means having memory
locations wherein the operating system is stored in the
memory means, a method, comprising the steps of:

(a) storing in a first of the memory locations of the
memory means a first directory entry for a file wherein
the first directory entry holds a short filename for the
file, said short filename including at most a maximum
number of characters that is permissible by an appli-
cation program;

(b) storing in a second of the memory locations of the
memory means that is adjacent to the first of the
memory locations a second directory entry for the file
wherein the second directory entry holds at least a first
portion of a long filename for the file, said long
filename including a greater number of characters than
the maximum number of characters that is permissible
by the application program;

20

25

30

45

50

55

60

65

2

(c) storing at least one additional divectory entry holding
a next portion of the long filename in the memory
means; and

[(c)] (@) accessing one of the directory entries to locate the

file.

8. The method as recited in claim 7 wherein the step of
storing the second directory entry further comprises the step
of storing a checksum of the short filename in the second
directory entry.

10. The method as recited in claim [9] 7 wherein the step
of storing at least one additional directory entry further
comprises the step of storing a checksum of the short
filename in the additional directory entry.

11. The method as recited in claim [9 wherein the step of
storing at least one additional directory entry further com-
prises the step of] 7 further comprising storing a signature in
each of the second directory entry and the at least one
additional directory entry that uniquely identifies which
portion of the long filename is stored in [the additional] that
directory entry.

12. In a computer system having a storage, a directory
service for accessing directory entries and a file system that
uses the directory entries to access files, a computer-readable
medium holding computer-executable instructions for per-
forming a method comprising computer-implemented steps
of:

(a) creating a first directory entry for a file wherein the
first directory holds a short filename for the file and the
location of the file;

(b) creating a second directory entry for the file wherein
the second directory entry holds at least one portion of
a long filename having a fixed number of characters;

(c) creating a sequence of at least one additional divectory
entry for holding a next sequential portion of the long
Sfilename;

[(c)] (@) storing the first directory entry [and] the second
directory entry and the at least one addtional directory
entry on the storage among the directory entries used
by the directory service; and

(e) accessing the second directory entry and the at least
one additional directory entry by the directory service
to access the file.

15. The computer-readable medium of claim [14] 72
wherein each additional directory entry may hold only a
fixed number of characters of the long filename and how
many additional directory entries are created is dictated by
how many additional directory entries are required to store
characters of the long filename which are not already stored
in the second directory entry.

16. The computer-readable medium of claim [14] 72
wherein the step of creating at least one additional directory
entry for the long filename further comprises the step of
creating a plurality of additional directory entries.

17. The computer-readable medium of claim [14] 72
wherein the step of creating the second directory entry
further comprises the step of providing a signature in the
second directory entry that identifies that the second direc-
tory entry holds the first portion of the long filename.

19. The computer-readable medium of claim [14] 72
wherein the step of creating at least one additional directory
entry for the long filename further comprises the step of
providing a checksum of the first filename in each additional
directory entry.

20. In a data processing system having a processor
running an operating system and a memory means with
memory locations, wherein said memory means stores the

US 5,758,352 C1

3

operating system, a computer-readable medium holding
computer-executable instructions for performing a method
comprising the steps of:

(a) storing in a first of the memory locations of the
memory means a first directory entry for a file wherein
the first directory entry holds a short filename for the
file, said short filename including at most a maximum
number of characters that is permissible by an appli-
cation program;

(b) storing in a second of the memory locations of the
memory means that is adjacent to the first of the
memory locations a second directory entry for the file
wherein the second directory entry holds at least a first
portion of a long filename for the file, said long
filename including a greater number of characters than
the maximum number of characters that is permissible
by the application program;

(c) storing at least one additional directory entry in at
least one other of the memory locations that is adjacent
to the second of the memory locations of the memory
means wherein the at least one additional directory
entry holds a next portion of the long filename; and

[(©)] (d) accessing one of the directory entries to locate the

file.

21. The computer-readable medium of claim 20 wherein
a checksum of the short filename is stored in the second
directory entry and the at least one additional directory
entry.

23. The computer-readable medium of claim [22] 20
wherein a signature is stored in each of the second directory
entry and the at least one additional directory entry [that],
each signature uniquely [identifies] identifying which por-
tion of the long filename is stored in [the additional] its
respective directory entry.

29. The method as vecited in claim 1, wherein the signa-
ture is stored at a beginning of the second directory entry
and comprises characters that are not permitted to be used
as characters of a short filename of a file.

30. The method as vecited in claim 5, wherein the signa-
ture provided in each additional divectory entry is stored at
a beginning of that additional directory entry and comprises
characters that are not permitted to be used as characters of
a short filename of a file.

31. The method as recited in claim 11, wherein the
signatures are stored at the beginnings of the second direc-
tory entry and the at least one additional directory entry and
each signature comprises characters that ave not permitted
to be used as characters of a short filename of a file.

32. The computer-readable medium as recited in claim
17, wherein the signature provided in the second directory
entry is stored at a beginning of the second directory entry
and comprises characters that are not permitted to be used
as characters of a short filename of a file.

33. The computer-readable medium as recited in claim
18, wherein the signatures provided in each additional
directory entry are stored at the beginnings of each addi-

20

25

30

35

40

45

50

55

4

tional directory entry and comprise characters that are not
permitted to be used as characters of a short filename of a

file.

34. The method as recited in claim 23, wherein the
signatures stored in the second directory entry and the at
least one additional directory entry are stored at a beginning
of each respective directory entry and comprise characters
that are not permitted to be used as characters of a short
Sfilename of a file.

35. The method as recited in claim 24, wherein the step of
creating the second divectory entry further comprises the
step of storing a checksum of the short filename in the
second directory entry.

36. The method as recited in claim 24, further comprising
the step of creating at least one additional directory entry
holding a next portion of the long filename.

37. The method as recited in claim 36 wherein the step of
creating at least one additional divectory entry further
comprises the step of storing a checksum of the short
filename in the at least one additional directory entry.

38. The method as recited in claim 36, further comprising
storing a signature in each of the second directory entry and
the at least one additional directory emtry that uniquely
identifies which portion of the long filename is stored in that
directory entry.

39. The method as recited in claim 38, wherein the
signatures stored in the second directory entry and the at
least one additional directory entry are stored at a beginning
of each respective directory entry and comprise characters
that are not permitted to be used as characters of a short
Sfilename of a file.

40. The computer-readable medium as recited in claim 28
wherein the step of creating the second directory further
comprises the step of storing a checksum of the short
filename in the second divectory entry.

41. The computer-readable medium as recited in claim
28, further comprising the step of creating at least one
additional directory entry holding a next portion of the long
Sfilename.

42. The computer-readable medium as recited in claim
41, wherein the step of creating at least one additional
directory emtry further comprises the step of storing a
checksum of the short filename in the at least one additional
directory entry.

43. The computer-readable medium as recited in claim
41, further comprising storing a signature in each of the
second directory entry and the at least one additional
directory entry that uniquely identifies which portion of the
long filename is stored that directory entry.

44. The computer-readable medium as recited in claim
43, wherein the signatures stored in the second directory
entry and the at least one additional directory entry are
stored at a beginning of each respective directory entry and
comprise characters that arve not permitted to be used as
characters of a short filename of a file.

#* #* #* #* #*

