‘g @PYase4:lO-cv-0356l-LB Documentl Filed08/12/10 Pagel of 161

1

(V8]

10
11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27

28

MORRISON & FOERSTER LLP
MICHAEL A. JACOBS (Bar No. 111664)
mjacobs@mofo.com

MARC DAVID PETERS (Bar No. 211725)

mdpeters@mofo.com

755 Page Mill Road '

Palo Alto, CA 94304-1018 @@g
Telephone: (650) 813-5600 % ‘
BOIES, SCHILLER & FLEXNER LLP
DAVID BOIES (Pro Hac Vice Pending)
dboies@bsfllp.com \
333 Main Street

Armonk, NY 10504
Telephone: (914) 749-8200
Facsimile: (914) 749-8300
STEVEN C. HOLTZMAN (Bar No. 144177)
sholtzman@bsfllp.com

1999 Harrison St., Suite 900

Oakland, CA 94612

Telephone (510) 874-1000
Facsimile: (510) 874-1460

. Facsimile (650) 494-0792

B

ORACLE CORPORATION

DORIAN DALEY (Bar No. 129049)
dorian.daley@oracle.com

DEBORAH K. MILLER (Bar No. 95527)
deborah.miller@oracle.com

WO

AUG 12 2010

Richard W, Wieking
Clerk, U.8, District Court
Northern District of California
San Jose

-MATTHEW M. SARBORARIA (Bar No. 211600)

matthew.sarboraria@oracle.com500 Oracle Parkway

Redwood City, CA 94065
Telephone: (650) 506-5200
Facsimile: (650) 506-7114

Attorneys for Plaintiff
ORACLE AMERICA, INC.

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA, INC.
Plaintiff,
V.
GOOGLE, INC.

Defendant.

CV10-03561

Case No.

COMPLAINT FOR PATENT AND
COPYRIGHT INFRINGEMENT

DEMAND FOR JURY TRIAL

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL

CASE NO.
pa-1418106

© 00 ~N oo o B~ W N

S N N B . N T S T T S T N T e e S N S N N T =
© N o g Br W N P O © 0o N o o w N Pk O

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page2 of 161

Plaintiff Oracle America, Inc., by and through its attorneys, alleges as follows:
PARTIES

1. Oracle America, Inc. (“Oracle America”) is a corporation organized under the laws
of the State of Delaware with its principal place of business at 500 Oracle Parkway, Redwood
City, California 94065. Oracle America does business in the Northern District of California.

2. Upon information and belief, Defendant Google, Inc. (“Google”) is a corporation
organized under the laws of the State of Delaware with its principal place of business at 1600
Amphitheatre Parkway, Mountain View, California 94043. Google does business in the Northern
District of California.

JURISDICTION AND VENUE

3. This is an action for patent and copyright infringement arising under the patent and
copyright laws of the United States, Titles 35 and 17, United States Code. Jurisdiction as to these
claims is conferred on this Court by 28 U.S.C. 88 1331 and 1338(a).

4. Venue is proper in the Northern District of California under 28 U.S.C. 8§ 1391 and
1400(b).

5. This Court has personal jurisdiction over Google. Google has conducted and does
conduct business within the State of California and within this judicial district.

6. Google, directly or through intermediaries, makes, distributes, offers for sale or
license, sells or licenses, and advertises its products and services in the United States, the State of
California, and the Northern District of California.

INTRADISTRICT ASSIGNMENT

7. This s an Intellectual Property Action to be assigned on a district-wide basis
pursuant to Civil Local Rule 3-2(c).

BACKGROUND

8. Oracle Corporation (“Oracle”) is one of the world’s leading technology companies,
providing complete, open, and integrated business software and hardware systems. On January

27, 2010, Oracle acquired Sun Microsystems, Inc. (“Sun”). Sun is now Oracle America, a

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL 1
CASE NO.
pa-1418106

© 00 ~N oo o B~ W N

S N N B . N T S T T S T N T e e S N S N N T =
© N o g Br W N P O © 0o N o o w N Pk O

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page3 of 161

subsidiary of Oracle. Oracle America continues to hold all of Sun’s interest, rights, and title to
the patents and copyrights at issue in this litigation.

9. One of the most important technologies Oracle acquired with Sun was the Java
platform. The Java platform, which includes code and other documentation and materials, was
developed by Sun and first released in 1995. The Java platform is a bundle of related programs,
specifications, reference implementations, and developer tools and resources that allow a user to
deploy applications written in the Java programming language on servers, desktops, mobile
devices, and other devices. The Java platform is especially useful in that it insulates applications
from dependencies on particular processors or operating systems. To date, the Java platform has
attracted more than 6.5 million software developers. It is used in every major industry segment
and has a ubiquitous presence in a wide range of computers, networks, and devices, including
cellular telephones and other mobile devices. Sun’s development of the Java platform resulted in
many computing innovations and the issuance to Sun of a substantial number of important
patents.

10. Oracle America is the owner by assignment of United States Patents
Nos. 6,125,447; 6,192,476; 5,966,702; 7,426,720; RE38,104; 6,910,205; and 6,061,520,
originally issued to Sun. True and correct copies of the patents at issue in this litigation are
included as Exhibits A-G.

11. Oracle America owns copyrights in the code, documentation, specifications,
libraries, and other materials that comprise the Java platform. Oracle America’s Java-related
copyrights are registered with the United States Copyright Office, including those attached as
Exhibit H.

12. Google’s Android competes with Oracle America’s Java as an operating system
software platform for cellular telephones and other mobile devices. The Android operating
system software “stack” consists of Java applications running on a Java-based object-oriented
application framework, and core libraries running on a “Dalvik” virtual machine (VM) that

features just-in-time (JIT) compilation. Google actively distributes Android (including without

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL 2
CASE NO.
pa-1418106

© 00 ~N oo o B~ W N

S N N B . N T S T T S T N T e e S N S N N T =
© N o g Br W N P O © 0o N o o w N Pk O

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page4 of 161

limitation the Dalvik VM and the Android software development kit) and promotes its use by
manufacturers of products and applications.

13. Android (including without limitation the Dalvik VM and the Android software
development kit) and devices that operate Android infringe one or more claims of each of United
States Patents Nos. 6,125,447; 6,192,476, 5,966,702; 7,426,720; RE38,104; 6,910,205; and
6,061,520.

14. Oninformation and belief, Google has been aware of Sun’s patent portfolio,
including the patents at issue, since the middle of this decade, when Google hired certain former
Sun Java engineers.

15. On information and belief, Google has purposefully, actively, and voluntarily
distributed Android and related applications, devices, platforms, and services with the expectation
that they will be purchased, used, or licensed by consumers in the Northern District of California.
Android has been and continues to be purchased, used, and licensed by consumers in the Northern
District of California. Google has thus committed acts of patent infringement within the State of
California and, particularly, within the Northern District of California. By purposefully and
voluntarily distributing one or more of its infringing products and services, Google has injured
Oracle America and is thus liable to Oracle America for infringement of the patents at issue in
this litigation pursuant to 35 U.S.C. § 271.

COUNT I

(Infringement of the 447 Patent)

16. Oracle America hereby restates and realleges the allegations set forth in paragraphs
1 through 15 above and incorporates them by reference.

17. On September, 26, 2000, United States Patent No. 6,125,447, (“the '447 patent”)
entitled “Protection Domains To Provide Security In A Computer System” was duly and legally
issued to Sun by the United States Patent and Trademark Office. Oracle America is the owner of
the entire right, title, and interest in and to the '447 patent. A true and correct copy of the '447

patent is attached as Exhibit A to this Complaint.

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL 3
CASE NO.
pa-1418106

© 00 ~N oo o B~ W N

S N N B . N T S T T S T N T e e S N S N N T =
© N o g Br W N P O © 0o N o o w N Pk O

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page5 of 161

18. Google actively and knowingly has infringed and is infringing the '447 patent with
knowledge of Oracle America’s patent rights and without reasonable basis for believing that
Google’s conduct is lawful. Google has also induced and contributed to the infringement of the
'447 patent by purchasers, licensees, and users of Android, and is continuing to induce and
contribute to the infringement of the '447 patent by purchasers, licensees, and users of Android.
Google’s acts of infringement have been and continue to be willful, deliberate, and in reckless
disregard of Oracle America’s patent rights. Google is thus liable to Oracle America for
infringement of the '447 patent pursuant to 35 U.S.C. § 271.

COUNT Il

(Infringement of the 476 Patent)

19. Oracle America hereby restates and realleges the allegations set forth in paragraphs
1 through 15 above and incorporates them by reference.

20. On February 20, 2000, United States Patent No. 6,192,476, (“the '476 patent”)
entitled “Controlling Access To A Resource” was duly and legally issued to Sun by the United
States Patent and Trademark Office. Oracle America is the owner of the entire right, title, and
interest in and to the '476 patent. A true and correct copy of the '476 patent is attached as Exhibit
B to this Complaint.

21. Google actively and knowingly has infringed and is infringing the '476 patent with
knowledge of Oracle America’s patent rights and without reasonable basis for believing that
Google’s conduct is lawful. Google has also induced and contributed to the infringement of the
'476 patent by purchasers, licensees, and users of Android, and is continuing to induce and
contribute to the infringement of the '476 patent by purchasers, licensees, and users of Android.
Google’s acts of infringement have been and continue to be willful, deliberate, and in reckless
disregard of Oracle America’s patent rights. Google is thus liable to Oracle America for

infringement of the '476 patent pursuant to 35 U.S.C. § 271.

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL 4
CASE NO.
pa-1418106

© 00 ~N oo o B~ W N

S N N B . N T S T T S T N T e e S N S N N T =
© N o g Br W N P O © 0o N o o w N Pk O

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page6 of 161

COUNT Il

(Infringement of the 702 Patent)

22. Oracle America hereby restates and realleges the allegations set forth in paragraphs
1 through 15 above and incorporates them by reference.

23. On October 12, 1999, United States Patent No. 5,966,702, (“the 702 patent™)
entitled “Method And Apparatus For Preprocessing And Packaging Class Files” was duly and
legally issued to Sun by the United States Patent and Trademark Office. Oracle America is the
owner of the entire right, title, and interest in and to the 702 patent. A true and correct copy of
the '702 patent is attached as Exhibit C to this Complaint.

24. Google actively and knowingly has infringed and is infringing the '702 patent with
knowledge of Oracle America’s patent rights and without reasonable basis for believing that
Google’s conduct is lawful. Google has also induced and contributed to the infringement of the
702 patent by purchasers, licensees, and users of Android, and is continuing to induce and
contribute to the infringement of the '702 patent by purchasers, licensees, and users of Android.
Google’s acts of infringement have been and continue to be willful, deliberate, and in reckless
disregard of Oracle America’s patent rights. Google is thus liable to Oracle America for
infringement of the '702 patent pursuant to 35 U.S.C. § 271.

COUNT IV

(Infringement of the 720 Patent)

25. Oracle America hereby restates and realleges the allegations set forth in paragraphs
1 through 15 above and incorporates them by reference.

26. On September 16, 2008, United States Patent No. 7,426,720, (“the '720 patent”)
entitled “System And Method For Dynamic Preloading Of Classes Through Memory Space
Cloning Of A Master Runtime System Process” was duly and legally issued to Sun by the United
States Patent and Trademark Office. Oracle America is the owner of the entire right, title, and
interest in and to the '720 patent. A true and correct copy of the 720 patent is attached as Exhibit

D to this Complaint.

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL 5
CASE NO.
pa-1418106

© 00 ~N oo o B~ W N

S N N B . N T S T T S T N T e e S N S N N T =
© N o g Br W N P O © 0o N o o w N Pk O

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page7 of 161

27. Google actively and knowingly has infringed and is infringing the '720 patent with
knowledge of Oracle America’s patent rights and without reasonable basis for believing that
Google’s conduct is lawful. Google has also induced and contributed to the infringement of the
720 patent by purchasers, licensees, and users of Android, and is continuing to induce and
contribute to the infringement of the '720 patent by purchasers, licensees, and users of Android.
Google’s acts of infringement have been and continue to be willful, deliberate, and in reckless
disregard of Oracle America’s patent rights. Google is thus liable to Oracle America for
infringement of the '720 patent pursuant to 35 U.S.C. § 271.

COUNT V

(Infringement of the 104 Patent)

28. Oracle America hereby restates and realleges the allegations set forth in paragraphs
1 through 15 above and incorporates them by reference.

29. On April 29, 2003, United States Patent No. RE38,104, (“the '104 patent”) entitled
“Method And Apparatus For Resolving Data References In Generate Code” was duly and legally
issued to Sun by the United States Patent and Trademark Office. Oracle America is the owner of
the entire right, title, and interest in and to the '104 patent. A true and correct copy of the '104
patent is attached as Exhibit E to this Complaint.

30. Google actively and knowingly has infringed and is infringing the 104 patent with
knowledge of Oracle America’s patent rights and without reasonable basis for believing that
Google’s conduct is lawful. Google has also induced and contributed to the infringement of the
'104 patent by purchasers, licensees, and users of Android, and is continuing to induce and
contribute to the infringement of the '104 patent by purchasers, licensees, and users of Android.
Google’s acts of infringement have been and continue to be willful, deliberate, and in reckless
disregard of Oracle America’s patent rights. Google is thus liable to Oracle America for

infringement of the '104 patent pursuant to 35 U.S.C. § 271.

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL 6
CASE NO.
pa-1418106

© 00 ~N oo o B~ W N

S N N B . N T S T T S T N T e e S N S N N T =
© N o g Br W N P O © 0o N o o w N Pk O

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page8 of 161

COUNT VI

(Infringement of the 205 Patent)

31. Oracle America hereby restates and realleges the allegations set forth in paragraphs
1 through 15 above and incorporates them by reference.

32. OnJune 21, 2005, United States Patent No. 6,910,205, (“the 205 patent”) entitled
“Interpreting Functions Utilizing A Hybrid Of Virtual And Native Machine Instructions” was
duly and legally issued to Sun by the United States Patent and Trademark Office. Oracle
America is the owner of the entire right, title, and interest in and to the '205 patent. A true and
correct copy of the '205 patent is attached as Exhibit F to this Complaint.

33. Google actively and knowingly has infringed and is infringing the 205 patent with
knowledge of Oracle America’s patent rights and without reasonable basis for believing that
Google’s conduct is lawful. Google has also induced and contributed to the infringement of the
'205 patent by purchasers, licensees, and users of Android, and is continuing to induce and
contribute to the infringement of the '205 patent by purchasers, licensees, and users of Android.
Google’s acts of infringement have been and continue to be willful, deliberate, and in reckless
disregard of Oracle America’s patent rights. Google is thus liable to Oracle America for
infringement of the '205 patent pursuant to 35 U.S.C. § 271.

COUNT VII

(Infringement of the ’520 Patent)

34. Oracle America hereby restates and realleges the allegations set forth in paragraphs
1 through 15 above and incorporates them by reference.

35. On May 9, 2000, United States Patent No. 6,061,520, (“the '520 patent”) entitled
“Method And System for Performing Static Initialization” was duly and legally issued to Sun by
the United States Patent and Trademark Office. Oracle America is the owner of the entire right,
title, and interest in and to the '520 patent. A true and correct copy of the '520 patent is attached
as Exhibit G to this Complaint.

36. Google actively and knowingly has infringed and is infringing the '520 patent with

knowledge of Oracle America’s patent rights and without reasonable basis for believing that

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL 7
CASE NO.
pa-1418106

© 00 ~N oo o B~ W N

S N N B . N T S T T S T N T e e S N S N N T =
© N o g Br W N P O © 0o N o o w N Pk O

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page9 of 161

Google’s conduct is lawful. Google has also induced and contributed to the infringement of the
'520 patent by purchasers, licensees, and users of Android, and is continuing to induce and
contribute to the infringement of the '520 patent by purchasers, licensees, and users of Android.
Google’s acts of infringement have been and continue to be willful, deliberate, and in reckless
disregard of Oracle America’s patent rights. Google is thus liable to Oracle America for
infringement of the '520 patent pursuant to 35 U.S.C. § 271.

COUNT VI

(Copyright Infringement)

37. Oracle America hereby restates and realleges the allegations set forth in paragraphs
1 through 15 above and incorporates them by reference.

38. The Java platform contains a substantial amount of original material (including
without limitation code, specifications, documentation and other materials) that is copyrightable
subject matter under the Copyright Act, 17 U.S.C. § 101 et seq.

39. Without consent, authorization, approval, or license, Google knowingly, willingly,
and unlawfully copied, prepared, published, and distributed Oracle America’s copyrighted work,
portions thereof, or derivative works and continues to do so. Google’s Android infringes Oracle
America’s copyrights in Java and Google is not licensed to do so.

40. On information and belief, users of Android, including device manufacturers, must
obtain and use copyrightable portions of the Java platform or works derived therefrom to
manufacture and use functioning Android devices. Such use is not licensed. Google has thus
induced, caused, and materially contributed to the infringing acts of others by encouraging,
inducing, allowing and assisting others to use, copy, and distribute Oracle America’s
copyrightable works, and works derived therefrom.

41. On information and belief, Google’s direct and induced infringements are and have
been knowing and willful.

42. By this unlawful copying, use, and distribution, Google has violated Oracle

America’s exclusive rights under 17 U.S.C. § 106.

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL 8
CASE NO.
pa-1418106

© 00 ~N oo o B~ W N

S N N B . N T S T T S T N T e e S N S N N T =
© N o g Br W N P O © 0o N o o w N Pk O

Case4:10-cv-03561-LB Documentl Filed08/12/10 PagelO of 161

43. Google has realized unjust profits, gains and advantages as a proximate result of its
infringement.

44. Google will continue to realize unjust profits, gains and advantages as a proximate
result of its infringement as long as such infringement is permitted to continue.

45. Oracle America is entitled to an injunction restraining Google from engaging in any
further such acts in violation of the United States copyright laws. Unless Google is enjoined and
prohibited from infringing Oracle America’s copyrights, inducing others to infringe Oracle
America’s copyrights, and unless all infringing products and advertising materials are seized,
Google will continue to intentionally infringe and induce infringement of Oracle America’s
registered copyrights.

46. Asadirect and proximate result of Google’s direct and indirect willful copyright
infringement, Oracle America has suffered, and will continue to suffer, monetary loss to its
business, reputation, and goodwill. Oracle America is entitled to recover from Google, in
amounts to be determined at trial, the damages sustained and will sustain, and any gains, profits,
and advantages obtained by Google as a result of Google’s acts of infringement and Google’s use
and publication of the copied materials.

PRAYER FOR RELIEF

WHEREFORE, Oracle America prays for judgment as follows:

A Entry of judgment holding Google liable for infringement of the patents and
copyrights at issue in this litigation;

B. An order permanently enjoining Google, its officers, agents, servants, employees,
attorneys and affiliated companies, its assigns and successors in interest, and those persons in
active concert or participation with it, from continued acts of infringement of the patents and
copyrights at issue in this litigation;

C. An order that all copies made or used in violation of Oracle America’s copyrights,
and all means by which such copies may be reproduced, be impounded and destroyed or
otherwise reasonably disposed of;

D. An order awarding Oracle America statutory damages and damages according to

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL 9
CASE NO.
pa-1418106

© 00 ~N oo o B~ W N

S N N B . N T S T T S T N T e e S N S N N T =
© N o g Br W N P O © 0o N o o w N Pk O

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagell of 161

proof resulting from Google’s infringement of the patents and copyrights at issue in this litigation,
together with prejudgment and post-judgment interest;

E. Trebling of damages under 35 U.S.C. § 284 in view of the willful and deliberate
nature of Google’s infringement of the patents at issue in this litigation;

F. An order awarding Oracle America its costs and attorney’s fees under 35 U.S.C.
§ 285 and 17 U.S.C. § 505; and

G. Any and all other legal and equitable relief as may be available under law and

which the court may deem proper.

DEMAND FOR A JURY TRIAL

Oracle America demands a jury trial for all issues so triable.

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL 10
CASE NO.
pa-1418106

9
10
11
12

14
15
16

26
27
28

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel2 of 161

Dated: August 12,2010

MORRISON & FOERSTER LLP
MICHAEL A. JACOBS (Bar No. 111664)
mjacobs@mofo.com

MARC DAVID PETERS (Bar No. 211725)
mdpeters@mofo.com

755 Page Mill Road

Palo Alto, CA 94304-1018

Telephone: (650) 813-5600

FFacsimile (650) 494-0792

BOIES, SCHILLER & FLEXNER LLP
DAVID BOIES (Pro Hac Vice Pending)
dboies@bsillp.com

333 Main Street

Armonk, NY 10504

Telephone: (914) 749-8200

IFacsimile: (914) 749-8300

STEVEN C. HOLTZMAN (Bar No. 144177)
sholtzman(@bsf{llp.com

1999 Harrison St., Suite 900

Oakland, CA 94612

Telephone (510) 874-1000

IFacsimile: (510) 874-1460

ORACLIE CORPORATION
MATTHEW M. SARBORARIA
(Bar No. 211600)
matthew.sarboraria(@oracle.com
500 Oracle Parkway

Redwood City, CA 94065
Telephone: (650) 506-5200
Facsimile: (650) 506-7114

Attorneys for Plaintiff
ORACLE AMERICA, INC.

COMPLAINT FOR PATENT AND COPYRIGHT INFRINGEMENT AND DEMAND FOR JURY TRIAL 11

CASE NO.
pa-1418106

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel3 of 161

EXHIBIT A

R [{1

United States Patent [
Gong

US006125447A
[11] Patent Number: 6,125,447
[45] Date of Patent: Sep. 26, 2000

[54] PROTECTION DOMAINS TO PROVIDE
SECURITY IN A COMPUTER SYSTEM
[75] Inventor: Li Gong, Menlo Park, Calif.

[73] Assignee: Sun Microsystems, Inc., Mountain

View, Calif.
[21] Appl. No.: 08/988,439
[22] Filed: Dec. 11, 1997
[51] Int. CL7 oo HO04L. 9/00
[52] US. Cle .o 713/201; 713/154
[58] Field of Search 713/200, 201-202,
713/151, 152, 153, 154-168, 169; 709/229,
303; 395/704; 714/38, 48; 707/103, 9, 10;
380/4
[56] References Cited
U.S. PATENT DOCUMENTS
5,311,591 5/1994 FISCRET wevvveereveeromserereesseeeeemsesenns 380/4
5,720,033 2/1998 Deo ... 713/200
5,758,153 5/1998 Atsatt et al. 395/614
5,841,870 11/1998 Fieres et al. o.eevevevveneeneeuennene 380/25
5,845,129 12/1998 Wendorf et al. 395/726
5,892,904 4/1999 Atkinson et al.cecoevereenuenne 713/201
FOREIGN PATENT DOCUMENTS
2259590A 3/1993 WIPO ...ovevevveneveeeceene GO6F 9/44
2308688A 7/1997 WIPOccccevvvvieveenne GO6F 12/14

OTHER PUBLICATIONS

Gong Li, et al.: “Going Beyond the Sandbox: An Overview
of the New Security Architecture in the Java™ Development
Kit 1.2”, Proceedings of the Usenix Symposium on Internet

406

Receive class

Is a protection
domain created
for class

Technologies and Systems, Monterey, CA, USA, 8-11 Dec.
1997, ISBN 1-880446-91-S, 1997, Berkeley, CA, USA,
Usenix Assoc., USA, pp. 103-112, XP002100907.

Wallach, D. S., et al.: “Extensible Security Architectures for
Java”, 16th ACM Symposium on Operating Systems Prin-
ciples, Sain Malo, France, 5-8 Oct. 1997, ISSN 0163-5980,
Operating Systems Review, Dec. 1997, ACM, USA, pp.
116-128, XP-002101681.

Dean, D., et al., “Java Security: From HotJava to Netscape
and Beyond,” Proceedings of the 1996 IEEE Symposium on
Security and Privacy, Oakland, CA, May 6-8, 1996.

Hamilton, M.A., “Java and the Shift to Net—Centric Com-
puting,” Computer, vol. 29, No. 8, Aug., 1996.

Primary Examiner—Robert W. Beausoliel, Jr.
Assistant Examiner—Scott T. Baderman
Attorney, Agent, or Firm—McDermott, Will & Emery

[57] ABSTRACT

A method and apparatus are provided for maintaining and
enforcing security rules using protection domains. As new
code arrives at a computer, a determination is assigned to a
protection domain based on the source from which the code
is received. The protection domain establishes the permis-
sions that apply to the code. In embodiments where the code
to be executed by the computer belongs to object classes, an
association is established between the protection domains
and the classes of objects. When an object requests an
action, a determination is made as to whether the action is
permitted based on the class to which the object belongs and
the association between classes and protection domains.

24 Claims, 6 Drawing Sheets

7 420

Establish protection

Establish mapping of class
to protection domain?

domain

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel5 of 161

6,125,447

Sheet 1 of 6

Sep. 26, 2000

U.S. Patent

9cl

™

4

L1ING3INI

1vo01 _

[

p

113
TOYLNOD
HOSHND

0z
\ 00 BTt
[
L JOVAHILINI ¥O1
NOILYDINNWNOD ¥0SS3004d
|
}
|
|
|
|
|
! 201
“ sng
}
|
|
|
|
_ 111 g0t 0T
! J2IA3d AYOWIN
_ 39Yd0LS Woy NIV
YIAY3S |
L B

719
30IA30 1NdNI

413
AV1dSId

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel6 of 161

U.S. Patent Sep. 26, 2000 Sheet 2 of 6 6,125,447
Code Stream 220
—
Trusted Sources
228
Code Executor 210
Untrusted
Sources
224
Policy Object
Policy File { 240
244
Code Identifier 232
Object
262 Class Name 238
\ Protection
Class | Domain
260 Object
282

Domain
Mapper
248

Access Controller
280

Fig. 2

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel7 of 161

6,125,447

Sheet 3 of 6

Sep. 26, 2000

U.S. Patent

¢ ‘b4

d-0¢€ ©} L-02€ suolonasu|

/

LAy sym Aexlse] Wwo2'80IN0S'MMWY/ANY UoISsILLad

1-02¢ =

LJAwy aym Aeyseyio 80In0sIaY)o//:ajl uoissiuuiad
Jdwy sum Aayawos 80IN0SaLLOS//:all Uoissiwlad
¥z 8l fiod

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel8 of 161

U.S. Patent Sep. 26, 2000 Sheet 4 of 6 6,125,447
406
Receive class

s a protection
domain created
for class

420

Establish protection
domain

¢

428

Y

Establish mapping of class
to protection domain?

Fig. 4

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel9 of 161

U.S. Patent Sep. 26, 2000 Sheet 5 of 6 6,125,447

550

Receive a request to perform
a particular action?

568

Is the required permission
included in all the protection
domains associated with the
request?

Perform requested action

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page20 of 161

6,125,447

Sheet 6 of 6

Sep. 26, 2000

U.S. Patent

w[21BYS/, ,pesl,
UoISSIULIBd

[UlBLIO(] UOJ9ajold

w/OJBYS/, SIM,
UoISSILLIad

w/dWY, B3,
uoISSIWLIag

WU}/, DI,
uoissiuad

A

kq

|uewoquopodiod J=-iee---

X'e

019 %oes bulied

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page2l of 161

6,125,447

1

PROTECTION DOMAINS TO PROVIDE
SECURITY IN A COMPUTER SYSTEM

RELATED APPLICATIONS

The present application is related to U.S. patent applica-
tion Ser. No. 08/988,857, entitled “TYPED,
PARAMETERIZED, AND EXTENSIBLE ACCESS CON-
TROL PERMISSIONS?”, filed by Li Gong, on the equal day
herewith, now U.S. Pat. No. 6,047,377 the contents of which
are incorporated herein by reference.

The present application is related to U.S. patent applica-
tion Ser. No. 08/988,431, entitled “CONTROLLING
ACCESS TO A RESOURCE”, filed by Li Gong, on the
equal day herewith, the contents of which are incorporated
herein by reference.

The present application is related to U.S. patent applica-
tion Ser. No. 08/988,660, entitled “SECURE CLASS
RESOLUTION, LOADING, AND DEFINITION”, filed by
Li Gong, on the equal day herewith, now U.S. Pat. No.
6,044,467, the contents of which are incorporated herein by
reference.

FIELD OF THE INVENTION

The present invention relates to security mechanisms in a
computer system.

BACKGROUND OF THE INVENTION

As the use of computer systems grows, organizations are
becoming increasingly reliant upon them. A malfunction in
the computer system can severely hamper the operation of
such organizations. Thus organizations that use computer
systems are vulnerable to users who may intentionally or
unintentionally cause the computer system to malfunction.

One way to compromise the security of a computer
system is to cause the computer system to execute software
that performs harmful actions on the computer system.
There are various types of security measures that may be
used to prevent a computer system from executing harmful
software. One example is to check all software executed by
the computer system with a “virus” checker. However, virus
checkers only search for very specific software instructions.
Many methods of using software to tamper with a comput-
er’s resources would not be detected by a virus checker.

Another very common measure used to prevent the execu-
tion of software that tampers with a computer’s resources is
the “trusted developers approach”. According to the trusted
developers approach, system administrators limit the soft-
ware that a computer system can access to only software
developed by trusted software developers. Such trusted
developers may include, for example, well know vendors or
in-house developers.

Fundamental to the trusted developers approach is the
idea that computer programs are created by developers, and
that some developers can be trusted to not have produced
software that compromises security. Also fundamental to the
trusted developers approach is the notion that a computer
system will only execute programs that are stored at loca-
tions that are under control of the system administrators.

Recently developed methods of running applications
involve the automatic and immediate execution of software
code loaded from remote sources over a network. When the
network includes remote sources that are outside the control
of system administrators, the trusted developers approach
does not work.

One attempt to adapt the trusted developers approach to
systems that can execute code from remote sources is

10

15

20

25

35

40

45

50

55

60

65

2

referred to as the sand box method. The sand box method
allows all code to be executed, but places restrictions on
remote code. Specifically, the sand box method permits all
trusted code full access to computer system’s resources and
all remote code limited access to a computer system’s
resources. Trusted code is usually stored locally on the
computer system under the direct control of the owners or
administrators of the computer system, who are accountable
for the security of the trusted code.

One drawback to the sandbox approach is that the
approach is not very granular. The sandbox approach is not
very granular because all remote code is restricted to the
same limited set of resources. Very often, there is a need to
permit remote code from one source access to one set of
computer resources while permitting remote code from
another source access to another set of computer resources.
For example, there may be a need to limit access to a one set
of files associated with one bank to remote code loaded over
a network from a source associated with that one bank, and
limit access to another set of files associated with another
bank to remote code loaded over a network from a source
associated with the other bank.

Providing security measures that allow more granularity
than the sand box method involves establishing a complex
set of relationships between principals and permissions. A
“principal” is an entity in the computer system to which
permissions are granted. Examples of principals include
processes, objects and threads. A “permission” is an autho-
rization by the computer system that allows a principal to
perform a particular action or function.

Establishing sets of permissions for principals that may be
received from multiple sources on a vast network, such as
the Internet, typically requires developing complex security
software. After such security software is developed, it must
often be changed in order to meet changing security require-
ments. Often, changing security requirements entail modi-
fying permissions or creating new kinds of permissions.
Typically, the security software of a computer system must
be reprogrammed to incorporate these new kinds of permis-
sions. Programming security software requires substantial
effort and in-depth knowledge about a computer’s security
mechanisms and a computer’s architecture.

Based on the foregoing, it is clearly desirable to develop
a method which reduces the effort and in-depth knowledge
required to modify permissions established for the sources
of code being executed by a computer system. It is further
desirable to develop a method which reduces the effort and
in-depth knowledge required to create new permissions.

SUMMARY OF THE INVENTION

A method and system are provided for implementing
security policies within a computer system. The security
mechanism makes use of structures referred to herein as
“protection domains” to organize, represent and maintain
the security policies that apply to the computer system.

According to one aspect of the invention, protection
domains are established based on policy data, where each
protection domain is associated with zero or more permis-
sions. An association is established between the protection
domains and classes of objects (i.e. instantiations of the
classes) that may be invoked by the computer system. When
an object requests an action, a determination is made as to
whether the action is permitted for that object. The deter-
mination is based on the association between the protection
domains and the classes. For example, based on policy data,
an association between Class CA and protection domain PA,

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page22 of 161

6,125,447

3

and class CB and protection domain PB is established.
Protection domain PA and protection domain PB are each
associated with a set of permissions. Object OA belongs (i.e.
is an instantiation of) to class CA. When object OA requests
an action, a determination of whether the action is permitted
is based on the permissions associated with protection
domain PA, because protection domain PA is associated
class CA.

According to another aspect of the invention, each pro-
tection domain and class is associated with a code identifier.
An association between the protection domains and the
classes is based on the code identifier. The code identifier
may contain data describing the source of code that defines
a class, a set of public cryptographic keys associated with
the source of code, or other information which describes the
source of code, or any combination thereof. A “source of
code” is an entity from which computer instructions are
received. Examples of sources of code include a file or
persistent object stored on a data server connected over a
network, a FLASH__ EPROM reader that reads instructions
stored on a FLASH__EPROM, or a set of system libraries.

The association between protection domains and code
identifiers is typically recorded in data persistently stored in
the computer system. The data associates code identifiers
with one or more permissions. For example, the code
identifier associated with class CA has a value “A.host/
fileA”, indicating that the source of class CA is A.hostA/
file A, a file on host A connected over the Internet. A security
policy file associates permission 1 and permission 2 with
Ahost/A fileA. Protection domain A, which is associated
with a code identifier having a value of “A.hostA/fileA”,
contains permission 1 and permission 2. Protection domain
A is associated class CA, because protection domain A and
protection domain are associated with the same code iden-
tifier value, “A.host/fileA”.

According to another aspect of the invention, when
executing code causes a request for an action, a determina-
tion is made as to whether the action is permitted. The
determination is based on the source of code of the code
causing the request and the association between protection
domains and sources of code executed by the computer
system. According to another aspect of the invention, the
association between protection domains and the sources of
code is also based on public cryptographic keys associated
with the sources of code. For example, code causing a
request is from source A.host/fileA, and protection domain
A is associated is A.host/fileA. A determination of whether
the request may be honored is based on the protection
domain A, and in particular, to the permissions associated
with protection domain A.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1 is a block diagram of a computer system on which
the present invention may be implemented in accordance
with an embodiment of the present invention;

FIG. 2 is a block diagram showing the objects used by a
code executor implementing protection domains in accor-
dance with an embodiment of the present invention;

FIG. 3 is block diagram showing an exemplary policy file
in accordance with an embodiment of the present invention;

FIG. 4 is a flow chart showing the steps involved in
implementing protection domains in accordance with an
embodiment of the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 is a flow chart showing the steps followed by an
access controller using an implementation of protection
domains in accordance with an embodiment of the present
invention; and

FIG. 6 is a block diagram showing a call stack represent-
ing objects associated with protection domains and permis-
sions in accordance with an embodiment of the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A method and apparatus for providing security through
the use of protection domains is described. In the following
description, for the purposes of explanation, numerous spe-
cific details are set forth in order to provide a thorough
understanding of the present invention. It will be apparent,
however, to one skilled in the art that the present invention
may be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the present invention.

Hardware Overview

FIG. 1 is a block diagram which illustrates a computer
system 100 upon which an embodiment of the invention
may be implemented. Computer system 100 includes a bus
102 or other communication mechanism for communicating
information, and a processor 104 coupled with bus 102 for
processing information. Processor 104 generally represents
one or more processors capable of executing instructions
that conform to a particular instruction set. Computer system
100 also includes a main memory 106, such as a random
access memory (RAM) or other dynamic storage device,
coupled to bus 102 for storing information and instructions
to be executed by processor 104. Main memory 106 also
may be used for storing temporary variables or other inter-
mediate information during execution of instructions by
processor 104. Computer system 100 also includes a read
only memory (ROM) 108 or other static storage device
coupled to bus 102 for storing static information and instruc-
tions for processor 104. A storage device 110, such as a
magnetic disk or optical disk, is also provided and coupled
to bus 102 for storing information and instructions.

Computer system 100 may also be coupled via bus 102 to
a display 112, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
114, including alphanumeric and other keys, is also provided
and coupled to bus 102 for communicating information and
command selections to processor 104. Another type of user
input device is cursor control 116, such as a mouse, a
trackball, or cursor direction keys for communicating direc-
tion information and command selections to processor 104
and for controlling cursor movement on display 112. This
input device typically has two degrees of freedom in two
axes, a first axis (e.g., X) and a second axis (e.g., y), which
allows the device to specify positions in a plane.

The invention is related to the use of computer system 100
for the implementation of protection domains. According to
one embodiment of the invention, the implementation of
protection domains is provided by computer system 100 in
response to processor 104 executing sequences of instruc-
tions contained in main memory 106. Such instructions may
be read into main memory 106 from another computer-
readable medium, such as storage device 110. In alternative
embodiments, hard-wired circuitry may be used in place of
or in combination with software instructions to implement

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page23 of 161

6,125,447

5

the invention. Thus, embodiments of the invention are not
limited to any specific combination of hardware circuitry
and software.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to processor 104 for execution. Such a medium may
take many forms, including but not limited to, non-volatile
media, volatile media, and transmission media. Non-volatile
media includes, for example, optical or magnetic disks, such
as storage device 110. Volatile media includes dynamic
memory, such as main memory 106. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise bus 102. Transmission media can
also take the form of acoustic or light waves, such as those
generated during radio-wave and infra-red data communi-
cations.

Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 104 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 100 can receive the data on the telephone line and
use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector coupled to bus 102 can receive
the data carried in the infra-red signal and place the data on
bus 102. Bus 102 carries the data to main memory 106, from
which processor 104 retrieves and executes the instructions.
The instructions received by main memory 106 may option-
ally be stored on storage device 110 either before or after
execution by processor 104.

Computer 100 also includes a communication interface
118 coupled to bus 102. Communication interface 118
provides a two-way data communication coupling to a
network link 120 to a local network 122. For example, if
communication interface 118 is an integrated services digital
network (ISDN) card or a modem, communication interface
118 provides a data communication connection to the cor-
responding type of telephone line. If communication inter-
face 118 is a local area network (LAN) card, communication
interface 118 provides a data communication connection to
a compatible LAN. Wireless links are also possible. In any
such implementation, communication interface 118 sends
and receives electrical, electromagnetic or optical signals
which carry digital data streams representing various types
of information.

Network link 120 typically provides data communication
through one or more networks to other data devices. For
example, network link 120 may provide a connection
through local network 122 to a host computer 124 or to data
equipment operated by an Internet Service Provider (ISP)
126. ISP 126 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 128. Local
network 122 and Internet 128 both use electrical, electro-
magnetic or optical signals which carry digital data streams.
The signals through the various networks and the signals on

10

15

20

25

30

35

40

45

50

55

60

65

6

network link 120 and through communication interface 118,
which carry the digital data to and from computer 100 are
exemplary forms of carrier waves transporting the informa-
tion.

Computer 100 can send messages and receive data,
including program code, through the network(s), network
link 120 and communication interface 118. In the Internet
example, a server 130 might transmit a requested code for an
application program through Internet 128, ISP 126, local
network 122 and communication interface 118.

The received code may be executed by processor 104 as
it is received, and/or stored in storage device 110, or other
non-volatile storage for later execution. In this manner,
computer 100 may obtain application code in the form of a
carrier wave.

In alternative embodiments, hard-wired circuitry may be
used in place of or in combination with software instructions
to implement the present invention. Thus, the present inven-
tion is not limited to any specific combination of hardware
circuitry and software.

Functional Overview

As mentioned above, systems that allow execution of
software from remote sources present difficult security prob-
lems. The systems that have been developed to address those
problems are complex, often requiring the use of elaborate
permission rules to deal with principals received from
numerous sources. As the security needs of the systems
change, the permission rules must be updated by someone
who understands the complexities of the system.

According to one aspect of the invention, the complexities
associated with elaborate permission rules and systems are
reduced by establishing dynamically constructing and estab-
lishing protection domains for code that arrives for execu-
tion on a computer system. The protection domains embody
sets of permissions and are constructed based on policy
information.

The use of the protection domains provides a relatively
simple mechanism to implement otherwise complex security
policies. As the security needs of a system changes, the
security mechanism described herein allows easy modifica-
tion to adapt to the changes, without requiring specialized
knowledge of complex security-management techniques.

Exemplary Security Mechanism

An exemplary security mechanism illustrating the use of
protection domains is shown in FIG. 2. Referring to FIG. 2,
the exemplary security mechanism includes a policy file
244, a policy object 240, a domain mapper object 248, an
access controller 280, and one or more protection domains
282. The security mechanism is implemented using a code
executor 210.

Code executor 210 executes code which code executor
210 receives from code stream 220. One example of a code
executor is a Java virtual machine. A Java virtual machine
interprets code called byte code. Byte code is code generated
by a Java compiler from source files containing text. The
Java virtual machine is described in detail in Tim Lindholm
& Frank Yellin, The Java Virtual Machine Specification
(1996).

For the purposes of explanation, it shall be assumed that
code from code stream 220 is object oriented software.
Consequently, the code is in the form of methods associated
with objects that belong to classes. In response to instruc-
tions embodied by code executed by code executor 210,

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page24 of 161

6,125,447

7

code executor 210 creates one or more objects 240. An
object is a record of data combined with the procedures and
functions that manipulate the record. All objects belong to a
class. Each object belonging to a class has the same fields
(“attributes”) and the same methods. The methods are the
procedures, functions, or routines used to manipulate the
object. An object is said to be an “instance” of the class to
which the object belongs.

One or more class definitions are contained in code from
code stream 220. The fields and methods of the objects
belonging to a class are defined by a class definition. These
class definitions are used by code executor 210 to create
objects which are instances of the classes defined by the
class definitions.

These class definitions are generated from source code
written by a programmer. For example, a programmer using
a Java Development Kit enters source code that conforms to
the Java programming language into a source file. The
source code embodies class definitions and other instruc-
tions which are used to generate byte code which controls
the execution of a code executor (i.e. a Java virtual
machine). Techniques for defining classes and generating
code executed by a code executor, such as a Java virtual
machine, are well known to those skilled in the art.

Each class defined by a class definition from code stream
220 is associated with a class name 238 and a code source
236. Code executor 210 maintains an association between a
class and its class name and code source.

The code source may be a composite record containing a
uniform resource locator (“URL”) 234 and set of public
cryptographic keys 236. A URL identifies a particular
source. The URL is a string used to uniquely identify any
server connected to the world wide web. A URL may also be
used to designate sources local to computer system 100.
Typically, the URL includes the designation of the file and
directory of the file that is the source of the code stream that
a server is providing.

A public cryptographic key, herein referred to as a key, is
used to validate the digital signature which may be included
in a file used to transport related code and data. Public
cryptographic keys and digital signatures are described in
Schneier, Applied Crytography, (1996). The keys may be
contained in the file, may be contained in a database
associating keys with sources (e.g. URLSs), or be accessible
using other possible alternative techniques.

A class may be associated with the digital signature
associated with the file used to transport code defining the
class, or the class definition of the class may be specifically
associated with a digital signature. A class that is associated
with a valid digital signature is referred to as being signed.
Valid digital signatures are digital signatures that can be
verified by known keys stored in a database. If a class is
associated with a digital signature which can not be verified,
or the class is not associated with any digital signature, the
class is referred to as being unsigned. Unsigned classes may
be associated with a default key. A key may be associated
with a name, which may be used to look up the key in the
database.

Trusted and Untrusted Sources

The source of code stream 220 may be from zero or more
untrusted sources 224 or zero or more trusted sources 228.
Untrusted sources 224 and trusted sources 228 may be file
servers, including file servers that are part of the World Wide
Web network of servers connected to the Internet. An
untrusted source is typically not under the direct control of

10

15

20

25

30

35

40

45

50

55

60

65

8

the operators of computer system 100. Code from untrusted
sources is herein referred to as untrusted code.

Because untrusted code is considered to pose a high
security risk, the set of computer resources that untrusted
code may access is usually restricted to those which do not
pose security threats. Code from a trusted source is code
usually developed by trusted developers. Trusted code is
considered to be reliable and pose much less security risk
than remote code.

Software code which is loaded over the network from a
remote source and immediately executed is herein referred
to as remote code. Typically, a remote source is a computer
system of another separate organization or individual. The
remote source is often connected to the Internet.

Normally untrusted code is remote code. However, code
from sources local to computer system 100 may pose a high
security risk. Code from such local sources may be deemed
to be untrusted code from an untrusted source. Likewise,
code from a particular remote source may be considered to
be reliable and to pose relatively little risk, and thus may be
deemed to be trusted code from a trusted resource.

According to one embodiment of the invention, an access
controller is used in conjunction with protection domains to
implement security policies that allow trusted code to access
more resources than untrusted code, even when the trusted
and untrusted code are executed by the same principal. A
security policy thus established determines what actions
code executor 210 will allow the code within code stream
220 to perform. The use of typed permissions and protection
domains allows policies that go beyond a simple trusted/
untrusted dichotomy by allowing relatively complex per-
mission groupings and relationships.

Protection domains, permissions and policies that may be
used to establish the access rights of code shall now be
described in greater detail with continued reference to FIG.
2.

Protection Domains and Permissions

According to an embodiment of the present invention,
protection domains are used to enforce security within
computer systems. A protection domain can be viewed as a
set of permissions granted to one or more principals. A
permission is an authorization by the computer system that
allows a principle to execute a particular action or function.
Typically, permissions involve an authorization to perform
an access to a computer resource in a particular manner. An
example of an authorization is an authorization to “write” to
a particular directory in a file system (e.g./home).

A permission can be represented in numerous ways in a
computer system. For example, a data structure containing
text instructions can represent permissions. An instruction
such as “permission write/somedirectory/somefile” denotes
a permission to write to file “somefile” in the directory
“/somedirectory.” The instruction denotes which particular
action is authorized, and the computer resource upon which
that particular action is authorized. In this example, the
particular action authorized is to “write.” The computer
resources upon which the particular action is authorized is a
file (“/somedirectory/somefile”) in a file system of computer
system 100. Note that in the example provided the file and
the directory in which the file is contained are expressed in
a conventional form recognized by those skilled in the art.

Permissions can also be represented by objects, herein
referred to as permission objects. Attributes of the object
represent a particular permission. For example, an object can
contain an action attribute of “write,” and a target resource

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page25 of 161

6,125,447

9

attribute of “/somedirectory.” A permission object may have
one or more permission validation methods which determine
whether a requested permission is authorized by the par-
ticular permission represented by the permission object.

Policies

The correlation between permissions and principals con-
stitutes the security policy of the system. FIG. 2 illustrates
an exemplary policy implemented through use of a policy
file 244. A protection domain in this exemplary policy is
defined as the set of permissions granted to the objects
associated with a particular code identifier. The policy of the
system is represented by one or more files containing
instructions. The instructions map code identifiers to autho-
rized permissions. Each instruction establishes a mapping
between a particular code identifier and a particular autho-
rized permission. An instruction represents one authorized
permission for the objects belonging to the classes associ-
ated with the code identifier in the instruction.

Storing instructions in a file is just one method of repre-
senting the policy of the system with persistently stored data.
Other methods are possible for representing the policy with
persistent data. For example, data in a database system can
be used to map code identifiers to authorized permissions, or
attributes of a persistent object can be used to map code
identifiers to authorized permissions.

FIG. 3 illustrates exemplary policy file 244. The format of
an instruction in exemplary policy file 244 is:

<“permission”><URL><key name><action><target>
The <URL> and <key name> represent a code identifier; the
<action> and <target> represent a permission. The key name
is associated with a key. The key and corresponding key
name are stored together in a database. The key name can be
used to find the key in the database. Instruction 320-1 in
FIG. 3, for example, is therefore an authorization of a
permission to write to any file in “/tmp/*” by any object of
the classes associated with code identifier “file://
somesource”-“somekey” (i.e. URL-key).

Establishing Protection Domains

In order to efficiently and conveniently implement the
policy and establish protection domains, policy object 240,
domain mapper object 248, and one or more protection
domain objects 282 are provided. The policy object 240 and
domain mapper 248 are initialized during the initialization
of code executor 210. A protection domain object 282 is
created in a manner which shall be described. When the
domain mapper is initialized, each instruction in the policy
file 244 is parsed to generate a list representation of the code
identifier/authorized permission combinations that together
represent the policy. Each entry in the list represents a code
identifier/authorized permission pair. Code identifiers and
authorized permissions may each be represented with data
structures or objects.

A method for establishing protection domains authorized
for an object executing on computer system 200 shall now
be described with reference to steps shown in FIG. 4. The
exemplary code executor 210 and objects shown in FIG. 3
will be used as example. In step 406, a class definition is
received from code stream 220 by code executor 210. Note
that the code identifier of the class is also received. The class
defined by a class definition received by the code executor
210 is herein referred to as a received class. In some methods
of implementing a code executor, such as a Java virtual
machine, a class loader is invoked. The class loader loads
code from code stream 220 that defines a class, and then
executes the steps 410 to 428 in manner which shall be
described.

10

15

20

25

30

35

40

45

50

55

60

65

10

In the present example, assume that object 262 and
protection domain object 282 have not yet been created, and
that code executor is receiving the class definition for the
class 260 defining object 262. In step 406, the code identifier
received for class 260 is “file://somesource”-“somekey” (i.c.
URL-key). Code executor 210 then invokes a class loader.

In step 410, a determination is made as to whether a
protection domain object 282 is established for the code
identifier associated with the received class. The determi-
nation is made by invoking a method of a domain mapper
248. The method returns the protection domain object for a
given code identifier, if a protection domain object has been
established for the given code identifier. The domain mapper
maintains data indicating which protection domain objects
282 have been created and mapping of protection domain
objects 282 to the one or more codes sources that may be
associated with each protection domain object.

If no protection domain object is returned, then there is no
protection domain established for the code identifier. Con-
trol then passes to step 420. In the present example, the data
in the domain mapper indicating which protection domain
objects 282 have been created and the code identifiers
associated with each indicates there is no protection domain
associated with the code identifier “file:/somesource”-
“somekey” list of protection domain objects. Therefore,
control passes to step 420.

In step 420 a protection domain is established for the code
identifier associated the received class. The protection
domain is created by first invoking a method of policy object
240, passing as a parameter the code identifier associated
with the received class. In return, the policy object, which
contains a mapping of all code identifier/authorized
permissions, transmits a message having data indicating the
mapping of the code identifier to the one or more authorized
permissions mapped to the code identifier. The authorized
permissions may be transmitted by, for example, returning a
permissions container object. Then a protection domain
object is created, using the permissions container object to
populate the protection domain.

In the present example, the method of the policy object
which returns the permissions associated with a code iden-
tifier is invoked passing the code identifier, “file://
somesource”-“somekey,” as a parameter. The policy object
returns a permissions container object containing all the
permissions associated with the code identifier “file://
somesource” -“somekey.” There is only one permission
associated with the code identifier “file://somesource”-
“somekey”, which is a permission to write to any file in
directory “Itmp/*”. Then protection domain object 282 is
created and populated with the permission just mentioned.

Note the policy object may determine that no protection
domain is defined for a code identifier. In this case, a default
protection domain is provided. Typically, a default protec-
tion domain contains permissions posing no risk to the
security of computer system 100.

Next, in step 428, the mapping of the class to the
protection domain is established. The mapping of the class
to the protection domain is added to a mapping data structure
maintained within the domain mapper 248. In this example,
a mapping between class 260 and protection domain object
282 is created.

Creating an association of classes to protection domains
in the manner just described offers several advantages. First,
because the permissions authorized to an object are based on
the code identifier associated with the object’s class, an
object’s permission can based on the source of code creating

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page26 of 161

6,125,447

11

the object. This enables authorization of permissions to be
organized according to the source of code executed by code
executor 210. This ability facilitates development of more
granular security mechanisms. For example, objects based
on code from a first untrusted source can be granted one set
of permissions and objects based on code from a second
untrusted source can be granted a second set of permissions

In addition to being able to organize a policy with greater
granularity, the policy can be configured with very little
programming or in-depth knowledge of security systems. As
described earlier, simple instructions can be entered and
received by the computer system and stored in a policy file.
The policy file is then used by the computer system to
establish the security policy for the system.

In other embodiments of the invention, instead of storing
the mapping of classes to protection domains in a domain
mapper object, the mapping is stored as static fields in the
protection domain class. The protection domain class is the
class to which protection domain objects belong. There is
only one instance of a static field for a class no matter how
many objects belong to the class. The data indicating which
protection domains have been created and the code identi-
fiers associated with the protection domains is stored in
static fields of the protection domain class. Alternatively, a
mapping between a class and protections domains associated
with the class is stored as static fields in the class.

Static methods are used to access and update the static
data mentioned above. Static methods are invoked on behalf
of the entire class, and may be invoked without referencing
a specific object.

Exemplary Access Control

An exemplary method using access controller 280 accord-
ing to steps shown in FIG. 5 will illustrate a use of objects
and data structures described above. The calling stack 610
and protection domains shown in FIG. 6 are used as an
example illustrating the performance of the steps shown in
FIG. 5.

A code executor, such as a Java virtual machine, main-
tains for each thread or process a call stack of the object
methods invoked by the thread or process. The call stack
reflects the calling hierarchy between the methods that have
been invoked but not yet completed by the thread or process.
The call stack includes information identifying the objects
with methods on the call stack. For example, assume that a
thread executes a.x (where “a” is an object and “x” is a
method associated with object “a”). Assume that a.x invokes
b.y which invokes c.z. While c.z is executing, the call stack
will contain data identifying a.x, b.y, and c.z. At this point,
call stack 610 represents the calling hierarchy of the meth-
ods invoked by the thread but have not yet been completed
by the thread. When the thread finishes execution of c.z, the
data identifying c.z will be removed from the call stack.

Note that objects corresponding to the method invocations
in the call stack are each associated with a protection
domain. Object a is associated with protection domain I and
object b and object ¢ are associated with protection domain
J. Each protection domain object is associated with permis-
sion objects. The association between the objects, permis-
sion domain objects and the permission objects is based on
the domain mapper, policy object, a policy file, and consti-
tutes the security policy with respect to the objects shown in
FIG. 6.

Assume that a thread invokes a.x, b.y, and c.z in the
manner described so that call stack 610 is as it appears in
FIG. 6. Referring to FIG. 5, assume in step 550 a request to

10

15

20

25

30

40

45

50

55

60

65

12

perform a particular action is then received from the thread
while thread is executing c.z. Typically, a request is in the
form of an attempt to invoke a particular method that
performs a particular operation. In this example, the par-
ticular request is made by object a. In other words, a method
associated with object a invoked a method that may perform
the particular action. Object a is requesting to write to file
“/tmp/temporary”. The permission required to perform this
action is a “write” permission for file “/tmp/temporary”. The
permission required to perform a requested action is herein
referred to as a required permission.

Typically, access to a resource by code being executed by
a code executor can only be made by invoking a resource
manager. A resource manager is an object assigned the
responsibility of managing access to its respective resource.
A resource manager receives the request from object a. In
response to receiving the request from object a, the resource
manager assigned to manage the file system invokes an
access controller. The access controller determines whether
the permission required is authorized for the entity request-
ing access. In this example, access controller 280 is invoked
by the resource manager that received the request from
object c.

In step 564, a determination is made as to whether the
required permission for the requested action is included in
the protection domains associated with the request to per-
form an action. The protection domains associated with the
request are the protection domains associated with each
object represented in the call stack when the request for
access was made. A requested action is authorized if every
protection domain associated with the objects represented by
the call stack when the request for the requested action was
made contains a permission authorizing the permission
required to perform the requested action. Each permission
object of each particular protection domain object associated
with each object represented by the call stack is examined in
order to determine whether the permission object authorizes
the required permission.

Examining the permissions of a particular protection
domain associated with an object begins by determining an
object’s class. A code executor, such as a Java virtual
machine, provides that each object incorporates a method
which returns the class of an object. In this example, the first
object with a method on the call stack is object a. Access
controller 280 invokes the method that returns the class of
object a.

Next, the method of the class/domain mapper that returns
the protection domain object associated with a class is
invoked. Each permission in the returned protection domain
object is examined until it is determined whether any
permission in the protection domain authorizes the required
permission.

The validation method of each permission object in the
returned protection domain object is invoked until the vali-
dation method of a permission object indicates that the
required permission is authorized. As mentioned earlier, a
permission object contains a permission validation method
which indicates whether a particular permission is autho-
rized by the permission represented by the permission
object. When a protection domain is encountered that does
not contain a permission authorizing the required
permission, then execution of the steps ceases. If every
permission object contained by the protection domain autho-
rizes the required permission, then the next protection
domain for the next object represented on the calling stack
is examined, if any. After the last protection domain is

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page27 of 161

6,125,447

13

examined and found to contain the required permission,
control passes to step 568, where the action is performed.

In this example, protection domain object I is returned as
the protection domain associated with the class of object a.
The first permission object in protection domain object a
represents an authorized permission to write to any file in
directory “/tmp”. When the validation method of the first
permission object is invoked the validation method indicates
that the required permission is authorized.

Access controller 280 then examines the protection
domain for the class of the next object represented in the call
stack, which is b. Protection domain object J is the protec-
tion domain associated with the class of object b. The first
permission object in protection domain object J represents
an authorized permission to write to any file in directory
“/share”. When the validation method of the first permission
object is invoked the validation method indicates that the
required permission is authorized. The next permission
object is examined. When the validation method of the
second permission object is invoked the validation method
indicates that the required permission is not authorized. Thus
execution of the steps ceases 560.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. The specification
and drawings are, accordingly, to be regarded in an illus-
trative rather than a restrictive sense.

What is claimed is:

1. A method for providing security, the method compris-
ing the steps of:

establishing one or more protection domains, wherein a

protection domain is associated with zero or more
permissions;

establishing an association between said one or more

protection domains and one or more classes of one or
more objects; and

determining whether an action requested by a particular

object is permitted based on said association between
said one or more protection domains and said one or
more classes.

2. The method of claim 1, wherein:

at least one protection domain of said one or more

protection domains is associated with a code identifier;
at least one class of said one or more classes is associated
with said code identifier; and

the step of establishing an association between said one or

more protection domains and said one or more classes
of one or more objects further includes the step of
associating said one or more protection domains and
said one or more classes based on said code identifier.

3. The method of claim 2, wherein said code identifier
indicates a source of code used to define each class of said
one or more classes.

4. The method of claim 2, wherein said code identifier
indicates a key associated with each class of said one or
more classes.

5. The method of claim 2, wherein said code identifier
indicates a source of code used to define each class of said
one or more classes and indicates a key associated with each
class of said one or more classes.

6. The method of claim 2, wherein the step of associating
said one or more protection domains and said one or more
classes based on said code identifier further includes asso-
ciating said one or more protection domains and said one or

10

15

20

30

35

45

50

55

60

65

14

more classes based on data persistently stored, wherein said
data associates code identifiers with a set of one or more
permissions.

7. A method of providing security, the method comprising
the steps of:

establishing one or more protection domains, wherein a

protection domain is associated with zero or more
permissions;

establishing an association between said one or more

protection domains and one or more sources of code;
and

in response to executing code making a request to perform

an action, determining whether said request is permit-
ted based on a source of said code making said request
and said association between said one or more protec-
tion domains and said one or more sources of code.

8. The method of claim 7, wherein the step of establishing
an association between said one or more protection domains
and said one or more sources of code further includes
establishing an association between said one or more pro-
tection domains and said one or more sources of code and
one or more keys associated with said one or more sources
of code.

9. The method of claim 8, wherein the step of establishing
an association between said one or more protection domains
and said one or more sources of code and said one or more
keys associated with said one or more sources of code
further includes establishing said association between said
one or more protection domains and said one or more
sources of code and said one or more keys associated with
said one or more sources of code based on data persistently
stored, wherein said data associates particular sources of
code and particular keys with a set of one or more permis-
sions.

10. A computer-readable medium carrying one or more
sequences of one or more instructions, the one or more
sequences of the one or more instructions including instruc-
tions which, when executed by one or more processors,
causes the one or more processors to perform the steps of:

establishing one or more protection domains, wherein a

protection domain is associated with zero or more
permissions;

establishing an association between said one or more

protection domains and one or more classes of one or
more objects; and

determining whether an action requested by a particular

object is permitted based on said association between
said one or more protection domains and said one or
more classes.

11. The computer readable medium of claim 10, wherein:

at least one protection domain of said one or more

protection domains is associated with a code identifier;
at least one class of said one or more classes is associated
with said code identifier; and

the step of establishing an association between said one or

more protection domains and said one or more classes
of one or more objects further includes the step of
associating said one or more protection domains and
said one or more classes based on said code identifier.

12. The computer readable medium of claim 11, wherein
said code identifier indicates a source of code used to define
each class of said one or more classes.

13. The computer readable medium of claim 11, wherein
said code identifier indicates a key associated with each
class of said one or more classes.

14. The computer readable medium of claim 11, wherein
said code identifier indicates a source of code used to define

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page28 of 161

6,125,447

15

each class of said one or more classes and indicates a key
associated with each class of said one or more classes.

15. The computer readable medium of claim 14, wherein
the step of associating said one or more protection domains
and said one or more classes based on said code identifier
further includes associating said one or more protection
domains and said one or more classes based on data persis-
tently stored, wherein said data associates code identifiers
with a set of one or more permissions.

16. A computer-readable medium carrying one or more
sequences of one or more instructions, wherein the execu-
tion of the one or more sequences of the one or more
instructions causes the one or more processors to perform
the steps of:

establishing one or more protection domains, wherein a
protection domain is associated with zero or more
permissions;

establishing an association between said one or more
protection domains and one or more sources of code;
and

in response to executing code making a request to perform
an action, determining whether said request is permit-
ted based on a source of said code making said request
and said association between said one or more protec-
tion domains and said one or more sources of code.

17. The computer readable medium of claim 16, wherein
the step of establishing an association between said one or
more protection domains and said one or more sources of
code further includes establishing an association between
said one or more protection domains and said one or more
sources of code and one or more keys associated with said
one or more sources of code.

18. The computer readable medium of claim 17, wherein
the step of establishing an association between said one or
more protection domains and said one or more sources of
code and said one or more keys associated with said one or
more sources of code further includes establishing said
association between said one or more protection domains
and said one or more sources of code and said one or more
keys associated with said one or more sources of code based
on data persistently stored, wherein said data associates
particular sources of code and particular keys with a set of
one or more permissions.

10

15

20

25

30

35

40

16

19. A computer system comprising:

a Processor;

a memory coupled to said processor;

one or more protection domains stored as objects in said
memory, wherein each protection domain is associated
with zero or more permissions;

a domain mapping object stored in said memory, said
domain mapping object establishing an association
between said one or more protection domains and one
or more classes of one or more objects; and

said processor being configured to determine whether an
action requested by a particular object is permitted
based on said association between said one or more
protection domains and said one or more classes.

20. The computer system of claim 19, wherein:

at least one protection domain of said one or more
protection domains is associated with a code identifier;

at least one class of said one or more classes is associated
with said code identifier; and

said computer system further comprises said processor
configured to establish an association between said one
or more protection domains and said one or more
classes of one or more objects by associating said one
or more protection domains and said one or more
classes based on said code identifier.

21. The computer system of claim 20, wherein said code
identifier indicates a source of code used to define each class
of said one or more classes.

22. The computer system of claim 20, wherein said code
identifier indicates a key associated with each class of said
one or more classes.

23. The computer system of claim 20, wherein said code
identifier indicates a source of code used to define each class
of said one or more classes and indicates a key associated
with each class of said one or more classes.

24. The computer system of claim 20, further comprising
said processor configured to associate said one or more
protection domains and said one or more classes based on
said code identifier by associating said one or more protec-
tion domains and said one or more classes based on data
persistently stored in said computer system, wherein said
data associates code identifiers with a set of one or more
permissions.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page29 of 161

EXHIBIT B

N ([(O

a2 United States Patent
Gong

US006192476B1
10y Patent No.: US 6,192,476 B1
5) Date of Patent: Feb. 20, 2001

(549) CONTROLLING ACCESS TO A RESOURCE
(75) TInventor: Li Gong, Menlo Park, CA (US)

(73) Assignee: Sun Microsystems, Inc., Mountain
View, CA (US)

(*) Notice: Under 35 U.S.C. 154(b), the term of this

patent shall be extended for O days.

(21) Appl. No.: 08/988,431

(22) Filed: Dec. 11, 1997

(51) Int. CL7 oo sesennns HO4L 9/00
(52) US.Cl .. 713/201; 713/152; 709/229
(58) Field of Search ... 713/200, 201-202,
713/152-153, 154, 117, 187, 188; 308/4;
714/38, 48; 395/704; 709/229

(56) References Cited

U.S. PATENT DOCUMENTS
4,809,160 * 2/1989 Mahon et al. ..o 364/200
5,311,591 5/1994 TFiSChET oooeoovveeerereeeerversrnnnnns 380/4
5,649,099 7/1997 Theimer et al. .. 713/201
5,720,033 * 2/1998 Deoceeennene ... 713/200
5,745,678 * 4/1998 Herzberg et al. ... 713/200
5,758,153 * 5/1998 Atsatt et al. 395/614
5,845,129 * 12/1998 Wendorf et al. 395/726
5,892,904 * 4/1999 Atkinson et al. 7137201
5,915,085 * 6/1999 Koved 713/200
5,987,608 * 11/1999 Roskindcccoccuvviniviinnnne 713/200
FOREIGN PATENT DOCUMENTS

2259590A 3/1993 (GB) oo GO6F/9/44
2308688A 7/1997 (GB) GO6F/12/14

OTHER PUBLICATIONS

Dean, D., et al.,, “Java Security: From HotJava to Netscape
and Beyond, ” Proceedings of the 1996 IEEE Symposium on
Security and Privacy, Oakland, CA, May 6-8, 1996.
Hamilton, M.A., “Java and the Shift to Net—Centric Com-
puting, ” Computer, vol. 29, No. 8§, Aug., 1996.

Frame
0-F Call Stack
308

Frame 310-4

Frame 3103
Frames

30110F Piviege Flag
a2

Frame 3102

Frame 310-1

Check Permission Method

Gong Li, et al.: “Going Beyond the Sandbox: An Overview
of the New Security Architecture in the Java™ Development
Kit 1.2”, Proceedings Of The Usenix Symposium On Inter-
net Technologies And Systems, Monterey, CA, USA, Dec.
8-11, 1997,ISBN 1-880446-91-S, 1997, Berkeley, CA,
USA, Usenix Assoc., USA, pp. 103-112, XP-002100907.
Wallach, D. S., et al.: “Extensible Security Architectures for
Java”, 16" ACM Symposium On Operating Systems Prin-
ciples, Sain Malo, France, Oct. 5-8 1997, ISSN 0163-5980,
Operating Systems Review, Dec. 1997, ACM, USA, pp.
116-128, XP-002101681.

* cited by examiner

Primary Examiner—Robert W. Beausoliel, Jr.
Assistant Examiner—Scott T. Baderman
(74) Attorney, Agent, or Firm—McDermott, Will & Emery

(7) ABSTRACT

A method and system are provided for determining whether
a principal (e.g. a thread) may access a particular resource.
According to one aspect of the invention, the access autho-
rization determination takes into account the sources of the
code on the call stack of the principal at the time the access
is desired. Because the source of the code on the call stack
will vary over time, so will the access rights of the principal.
Thus, when a request for an action is made by a thread, a
determination is made of whether the action is authorized
based on permissions associated with routines in a calling
hierarchy associated with the thread. The determination of
whether a request is authorized is based on a determination
of whether at least one permission associated with each
routine encompasses the permission required to perform the
requested action. Support for “privileged” routines is also
provided. When a routine in the calling hierarchy is
privileged, the determination of whether an action is autho-
rized is made by determining whether at least one permis-
sion associated with each routine between and including the
privileged routine and a second routine in the calling hier-
archy encompasses the permission required to perform the
requested action.

21 Claims, 4 Drawing Sheets

Access Controller
Object
380

Protection Domain
a Object) Object
2403 2503
- Object) _ Protection Domain Object
2402 2502
.~ Object }_, (" Prolection Domain Cbject
2401 250-1

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page31 of 161

US 6,192,476 Bl

Sheet 1 of 4

Feb. 20, 2001

U.S. Patent

741
1SOH
ot "wgper -0 00T
0 — |
WNIT ! 50T |
NHOMIIN | Seomian JOVAUILNI . NE:i3s
V001 _ NOILYOINNWWOD d0S$3004d | ——— A TOYINOD
" _ ¥OSsHNI
_ |
| |
| |
| |
| |
%l | A} A “ ”v T
“ sna _ 301A3Q LNdNI
! [
| I
J |
13INYILNI _ |
_ |
| |
1111 (0] oy
| | AN
Bel —u.qnﬂ | 30IA30 AHOWIW | |||1||wV IdSI
_ 39VH0LS oY NIV _
¥angas | |
L

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page32 of 161

U.S. Patent

24o<

Feb. 20, 2001

Code Stream 220

Trusted Sources
228

Untrusted
Sources
224

Policy File
244

Sheet 2 of 4

US 6,192,476 Bl

Code Executor 210

Policy Object
242

Code Identifier_236

Class Name 238

\ -----

Class -

Domain
Mapper

Object

OO OF

Fig. 2

Protection
Domain
Object

282

? 250

Protection
Domain
Object

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page33 of 161

US 6,192,476 Bl

Sheet 3 of 4

Feb. 20, 2001

U.S. Patent

¢ 014

ﬁ IQ mN
19890 UlewoQ Uolo8l0Id

05
18(q0 ureWo(uonosjoIg

T05¢
109lq0
UlBWOQ uoiosiold

[Ijei
18(q0

13[j03U07) $S300Y

e
peaiy)
ﬂ lc“ m
poujol Rl
e "
PoyIeN
v
— "
poyia
Y
'
POUYIBp UOISSIWIE Y08YD)
90¢
o8[S [[eD

TOTE owel4

TOTE sweld

AL
Gey4 abajad

TOTE dwedd

-0l € aweld

F01E
aweld

301 1-0lE
sawel

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page34 of 161

U.S. Patent Feb. 20, 2001 Sheet 4 of 4 US 6,192,476 B1

410

Recieve request to determine
whether action is autharized

490

Do permissions
associated with
method encompass
permission
request?

Transmit message indication
permission request not
authorized

Did method enable
the privilege?

Select next method based on
calling hierarchy

460

Y Is there a N
next
method?

Fig. 4

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page35 of 161

US 6,192,476 B1

1
CONTROLLING ACCESS TO A RESOURCE

RELATED APPLICATIONS

The present application is related to U.S. patent applica-
tion Ser. No. 08/988,857, entitled “TYPED,
PARAMETERIZED, AND EXTENSIBLE ACCESS CON-
TROL PERMISSIONS?”, filed by Li Gong, on the equal day
herewith, the contents of which are incorporated herein by
reference.

The present application is related to U.S. patent applica-
tion Ser. No. 08/988,660, entitled “SECURE CLASS
RESOLUTION, LOADING, AND DEFINITION”, filed by
Li Gong, on the equal day herewith, the contents of which
are incorporated herein by reference.

The present application is related to U.S. patent applica-
tion Ser. No. 08/988,439, entitled “PROTECTION
DOMAINS TO PROVIDE SECURITY IN A COMPUTER
SYSTEM?, filed by Li Gong, on the equal day herewith, the
contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to security mechanisms in a
computer system.

BACKGROUND OF THE INVENTION

As the use of computer systems grows, organizations are
becoming increasingly reliant upon them. A malfunction in
the computer system can severely hamper the operation of
such organizations. Thus organizations that use computer
systems are vulnerable to users who may intentionally or
unintentionally cause the computer system to malfunction.

One way to compromise the security of a computer
system is to cause the computer system to execute software
that performs harmful actions on the computer system.
There are various types of security measures that may be
used to prevent a computer system from executing harmful
software. One example is to check all software executed by
the computer system with a “virus” checker. However, virus
checkers only search for very specific software instructions.
Many methods of using software to tamper with a comput-
er’s resources would not be detected by a virus checker.

Another very common measure used to prevent the execu-
tion of software that tampers with a computer’s resources is
the “trusted developers approach”. According to the trusted
developers approach, system administrators limit the soft-
ware that a computer system can access to only software
developed by trusted software developers. Such trusted
developers may include, for example, well know vendors or
in-house developers.

Fundamental to the trusted developers approach is the
idea that computer programs are created by developers, and
that some developers can be trusted to not have produced
software that compromises security. Also fundamental to the
trusted developers approach is the notion that a computer
system will only execute programs that are stored at loca-
tions that are under control of the system administrators.

Recently developed methods of running applications
involve the automatic and immediate execution of software
code loaded from remote sources over a network. When the
network includes remote sources that are outside the control
of system administrators, the trusted developers approach
does not work.

One attempt to adapt the trusted developers approach to
systems that can execute code from remote sources is

10

15

20

25

30

35

40

50

55

60

65

2

referred to as the trusted source approach. Key to the trusted
source approach is the notion that the location from which
a program is received (e.g. the “source” of the program)
identifies the developer of the program. Consequently, the
source of the program may be used to determine whether the
program is from a trusted developer. If the source is asso-
ciated with a trusted developer, then the source is considered
to be a “trusted source” and execution of the code is allowed.

One implementation of the trusted source approach is
referred to as the sand box method. The sand box method
allows all code to be executed, but places restrictions on
remote code. Specifically, the sand box method permits all
trusted code full access to a computer system’s resources
and all remote code limited access to a computer system’s
resources. Trusted code is usually stored locally on the
computer system under the direct control of the owners or
administrators of the computer system, who are accountable
for the security of the trusted code.

One drawback to the sandbox approach is that the
approach is not very granular. The sandbox approach is not
very granular because all remote code is restricted to the
same limited set of resources. Very often, there is a need to
permit remote code from one source access to one set of
computer resources while permitting remote code from
another source access to another set of computer resources.
For example, there may be a need to limit access to one set
of files associated with one bank to remote code loaded over
a network from a source associated with that one bank, and
limit access to another set of files associated with another
bank to remote code loaded over a network from a source
associated with the other bank.

Providing security measures that allow more granularity
than the sand box method involves establishing a complex
set of relationships between principals and permissions. A
“principal” is an entity in the computer system to which
permissions are granted. Examples of principals include
processes, objects and threads. A “permission” is an autho-
rization by the computer system that allows a principal to
perform a particular action or function.

The task of assigning permissions to principals is com-
plicated by the fact that sophisticated processes may involve
the interaction of code from multiple sources. For example,
code from a trusted first source being executed by a principal
(c.g. thread) may cause the execution of code from a trusted
second source, and then cause execution of code from an
untrusted third source. Even though the principal remains
the same when the code from the trusted second source and
code from the untrusted third source is being executed, the
access privileges appropriate for the principal when code
from the trusted second source is being executed likely differ
from access privileges appropriate for the principal when the
code from the untrusted third source is being executed. Thus,
access privileges appropriate for a principal may change
dynamically as the source of the code being executed by the
principal changes.

Based on the foregoing, it is clearly desirable to develop
a security method which can determine the appropriate
access privileges for principals. It is further desirable to
provide a security method that allows permissions to change
dynamically when code from one source causes the execu-
tion of code from another source.

SUMMARY OF THE INVENTION

A method and apparatus for determining the access rights
of principals is provided. According to one aspect of the
invention, access rights for a principal are determined

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page36 of 161

US 6,192,476 B1

3

dynamically based on the source of the code that is currently
being executed by the principal (e.g. thread, process)

According to one aspect of the invention, when a request
for an action by a thread is detected, a determination is made
of whether the action is authorized based on permissions
associated with routines in a calling hierarchy associated
with the thread. A calling hierarchy indicates the routines
(e.g. functions, methods) that have been invoked by or on
behalf of a principal (e.g. thread, process) but have not been
exited.

In one embodiment, the association between permissions
and routines is based on an association between routines and
classes and between classes and protection domains. Thus,
for example, a first routine may be associated with a first set
of permissions, which correspond to the permissions belong-
ing to the protection domain associated with the code source
of the first routine’s associated class. A second routine may
be associated with a second set of permissions, which
correspond to the permissions belonging to the protection
domain associated with the code source of the second
routine’s associated class. The determination of whether a
particular request is authorized is based on a determination
of whether at least one permission associated with each
routine in the calling hierarchy encompasses the permission
required to perform the requested action. For example, a
determination of whether a particular request is authorized is
based on determining whether (1) at least one permission
from a first set of permissions associated with the first
routine in a calling hierarchy encompass the permission
required, and (2) at least one permission of a second set of
permissions associated with the second routine in the calling
hierarchy encompass the permission required.

According to another aspect of the invention, certain
routines may be “privileged”. A privileged routine is
allowed to perform certain actions even if the routine that
called the privileged routine does not have permission to
perform those same actions.

According to one embodiment, a flag in a frame in the
calling hierarchy corresponding to a privileged routine is set
to indicate that the privileged routine is privileged. A frame
is a data element in a calling hierarchy that corresponds to
an invocation of a routine (e.g. function, method) that has
not been exited. When a first routine in the calling hierarchy
is privileged, the determination of whether an action is
authorized is made by determining whether at least one
permission associated with each routine between and includ-
ing the first routine and a second routine in the calling
hierarchy encompasses the permission required to perform
the requested action. The permissions of the routines pre-
ceding the privileged routine in the calling hierarchy are
ignored.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1 is a block diagram of a computer system on which
the present invention may be implemented in accordance
with an embodiment of the present invention;

FIG. 2 is a block diagram showing exemplary protection
domain objects, a code executor, classes, and objects created
by the code executor in accordance with an embodiment of
the present invention;

FIG. 3 is a block diagram illustrating an exemplary access
controller, call stack, protection domain, and the object and

10

15

20

25

30

35

40

45

50

55

60

65

4

methods being executed by a thread sending a request to
determine whether an action is authorized to the access
controller in accordance with an embodiment of the present
invention; and

FIG. 4 is a flow chart showing the steps of a method used
to determine whether an action is authorized for a thread in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A method and apparatus for determining authorization to
perform actions on a computer system is described. In the
following description, for the purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that the present
invention may be practiced without these specific details. In
other instances, well-known structures and devices are
shown in block diagram form in order to avoid unnecessarily
obscuring the present invention.

HARDWARE OVERVIEW

FIG. 1 is a block diagram that illustrates a computer
system 100 upon which an embodiment of the invention
may be implemented. Computer system 100 includes a bus
102 or other communication mechanism for communicating
information, and a processor 104 coupled with bus 102 for
processing information. Computer system 100 also includes
a main memory 106, such as a random access memory
(RAM) or other dynamic storage device, coupled to bus 102
for storing information and instructions to be executed by
processor 104. Main memory 106 also may be used for
storing temporary variables or other intermediate informa-
tion during execution of instructions to be executed by
processor 104. Computer system 100 further includes a read
only memory (ROM) 108 or other static storage device
coupled to bus 102 for storing static information and instruc-
tions for processor 104. A storage device 110, such as a
magnetic disk or optical disk, is provided and coupled to bus
102 for storing information and instructions.

Computer system 100 may be coupled via bus 102 to a
display 112, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 114, includ-
ing alphanumeric and other keys, is coupled to bus 102 for
communicating information and command selections to
processor 104. Another type of user input device is cursor
control 116, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 104 and for controlling cursor
movement on display 112. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., X) and
a second axis (e.g., y), that allows the device to specify
positions in a plane.

The invention is related to the use of computer system 100
for determining authorization to perform actions on a com-
puter system. According to one embodiment of the
invention, determining authorization to perform actions on a
computer system is provided by computer system 100 in
response to processor 104 executing one or more sequences
of one or more instructions contained in main memory 106.
Such instructions may be read into main memory 106 from
another computer-readable medium, such as storage device
110. Execution of the sequences of instructions contained in
main memory 106 causes processor 104 to perform the
process steps described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combi-

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page37 of 161

US 6,192,476 B1

5

nation with software instructions to implement the inven-
tion. Thus, embodiments of the invention are not limited to
any specific combination of hardware circuitry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to processor 104 for execution. Such a medium may
take many forms, including but not limited to, non-volatile
media, volatile media, and transmission media. Non-volatile
media includes, for example, optical or magnetic disks, such
as storage device 110. Volatile media includes dynamic
memory, such as main memory 106. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise bus 102. Transmission media can
also take the form of acoustic or light waves, such as those
generated during radio-wave and infra-red data communi-
cations.

Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 104 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 100 can receive the data on the telephone line and
use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector coupled to bus 102 can receive
the data carried in the infra-red signal and place the data on
bus 102. Bus 102 carries the data to main memory 106, from
which processor 104 retrieves and executes the instructions.
The instructions received by main memory 106 may option-
ally be stored on storage device 110 either before or after
execution by processor 104.

Computer system 100 also includes a communication
interface 118 coupled to bus 102. Communication interface
118 provides a two-way data communication coupling to a
network link 120 that is connected to a local network 122.
For example, communication interface 118 may be an inte-
grated services digital network (ISDN) card or a modem to
provide a data communication connection to a correspond-
ing type of telephone line. As another example, communi-
cation interface 118 may be a local area network (LAN) card
to provide a data communication connection to a compatible
LAN. Wireless links may also be implemented. In any such
implementation, communication interface 118 sends and
receives electrical, electromagnetic or optical signals that
carry digital data streams representing various types of
information.

Network link 120 typically provides data communication
through one or more networks to other data devices. For
example, network link 120 may provide a connection
through local network 122 to a host computer 124 or to data
equipment operated by an Internet Service Provider (ISP)
126. ISP 126 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 128. Local
network 122 and Internet 128 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on

10

15

25

30

40

45

50

55

60

65

6

network link 120 and through communication interface 118,
which carry the digital data to and from computer system
100, are exemplary forms of carrier waves transporting the
information.

Computer system 100 can send messages and receive
data, including program code, through the network(s), net-
work link 120 and communication interface 118. In the
Internet example, a server 130 might transmit a requested
code for an application program through Internet 128, ISP
126, local network 122 and communication interface 118. In
accordance with the invention, one such downloaded appli-
cation provides for determining authorization to perform
actions on a computer system as described herein.

The received code may be executed by processor 104 as
it is received, and/or stored in storage device 110, or other
non-volatile storage for later execution. In this manner,
computer system 100 may obtain application code in the
form of a carrier wave.

FUNCTIONAL OVERVIEW

A security enforcement mechanism is provided in which
the access permissions of a principal, such as a thread, are
allowed to vary over time based on the source of the code
currently being executed. When a routine that arrives from
a trusted source is executing, the thread executing the
routine is typically allowed greater access to resources.
When the same thread is executing a routine from an
untrusted source, the thread is typically allowed more
restricted access to resources. When a routine calls another
routine, the thread executing the routines is associated with
permissions common to both routines, and is thus is
restricted to a level of access that is lesser than or equal to
the level access allowed for either routine.

The mechanism allows certain routines to be “privileged”.
When determining whether a thread is able to perform an
action, only the permissions associated with the privileged
routine and the routines above the privileged routine in the
calling hierarchy of the thread are inspected.

According to one embodiment, the security mechanism
described herein uses permission objects and protection
domain objects to store information that models the security
policy of a system. The nature and use of these objects, as
well as the techniques for dynamically determining the
time-variant access privileges of a principal, are described
hereafter in greater detail.

EXEMPLARY SECURITY MECHANISM

An exemplary security mechanism illustrating the use of
protection domains is shown in FIG. 2. Referring to FIG. 2,
the exemplary security mechanism includes a policy file
244, a policy object 240, a domain mapper object 248, an
access controller 280, and one or more protection domains
282. The security mechanism is implemented using a code
executor 210.

Code executor 210 executes code which code executor
210 receives from code stream 220. One example of a code
executor is a Java virtual machine. A Java virtual machine
interprets code called byte code. Byte code is code generated
by a Java compiler from source files containing text. The
Java virtual machine is described in detail in Tim Lindholm
& Frank Yellin, The Java Virtual Machine Specification
(1996).

For the purposes of explanation, it shall be assumed that
code from code stream 220 is object oriented software.
Consequently, the code is in the form of methods associated

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page38 of 161

US 6,192,476 B1

7

with objects that belong to classes. In response to instruc-
tions embodied by code executed by code executor 210,
code executor 210 creates one or more objects 240. An
object is a record of data combined with the procedures and
functions that manipulate the record. All objects belong to a
class. Each object belonging to a class has the same fields
(“attributes”) and the same methods. The methods are the
procedures, functions, or routines used to manipulate the
object. An object is said to be an “instance” of the class to
which the object belongs.

One or more class definitions are contained in code from
code stream 220. The fields and methods of the objects
belonging to a class are defined by a class definition. These
class definitions are used by code executor 210 to create
objects which are instances of the classes defined by the
class definitions.

These class definitions are generated from source code
written by a programmer. For example, a programmer using
a Java Development Kit enters source code that conforms to
the Java programming language into a source file. The
source code embodies class definitions and other instruc-
tions which are used to generate byte code which controls
the execution of a code executor (i.e. a Java virtual
machine). Techniques for defining classes and generating
code executed by a code executor, such as a Java virtual
machine, are well known to those skilled in the art.

Each class defined by a class definition from code stream
220 is associated with a class name 238 and a code source
236. Code executor 210 maintains an association between a
class and its class name and code source. The code source
represents a source of code. A “source of code” is an entity
from which computer instructions are received. Examples of
sources of code include a file or persistent object stored on
a data server connected over a network, a FLASH__EPROM
reader that reads instructions stored on a FLASH__ EPROM,
or a set of system libraries.

In one embodiment of the present invention, the code
source may be a composite record containing a uniform
resource locator (“URL”) 234 and set of public crypto-
graphic keys 236. A URL identifies a particular source. The
URL is a string used to uniquely identify any server con-
nected to the world wide web. A URL may also be used to
designate sources local to computer system 100. Typically,
the URL includes the designation of the file and directory of
the file that is the source of the code stream that a server is
providing.

A public cryptographic key, herein referred to as a key, is
used to validate the digital signature which may be included
in a file used to transport related code and data. Public
cryptographic keys and digital signatures are described in
Schneier, Applied Cryptography, (1996). The keys may be
contained in the file, may be contained in a database
associating keys with sources (e.g. URLSs), or be accessible
using other possible alternative techniques.

A class may be associated with the digital signature
associated with the file used to transport code defining the
class, or the class definition of the class may be specifically
associated with a digital signature. A class that is associated
with a valid digital signature is referred to as being signed.
Valid digital signatures are digital signatures that can be
verified by known keys stored in a database. If a class is
associated with a digital signature which can not be verified,
or the class is not associated with any digital signature, the
class is referred to as being unsigned. Unsigned classes may
be associated with a default key. A key may be associated
with a name, which may be used to look up the key in the
database.

10

15

20

25

30

35

40

45

50

55

60

65

8

While one code source format has been described as
including data indicating a cryptographic key and URL,
alternate formats are possible. Other information indicating
the source of the code, or combinations thereof, may be used
to represent code sources. Therefore, it is understood that the
present invention, is not limited to any particular format for
a code source.

TRUSTED AND UNTRUSTED SOURCES

The source of code stream 220 may be from zero or more
untrusted sources 224 or zero or more trusted sources 228.
Untrusted sources 224 and trusted sources 228 may be file
servers, including file servers that are part of the World Wide
Web network of servers connected to the Internet. An
untrusted source is typically not under the direct control of
the operators of computer system 100. Code from untrusted
sources is herein referred to as untrusted code.

Because untrusted code is considered to pose a high
security risk, the set of computer resources that untrusted
code may access is usually restricted to those which do not
pose security threats. Code from a trusted source is code
usually developed by trusted developers. Trusted code is
considered to be reliable and pose much less security risk
than remote code.

Software code which is loaded over the network from a
remote source and immediately executed is herein referred
to as remote code. Typically, a remote source is a computer
system of another separate organization or individual. The
remote source is often connected to the Internet.

Normally untrusted code is remote code. However, code
from sources local to computer system 100 may pose a high
security risk. Code from such local sources may be deemed
to be untrusted code from an untrusted source. Likewise,
code from a particular remote source may be considered to
be reliable and to pose relatively little risk, and thus may be
deemed to be trusted code from a trusted resource.

According to one embodiment of the invention, an access
controller is used in conjunction with protection domains to
implement security policies that allow trusted code to access
more resources than untrusted code, even when the trusted
and untrusted code are executed by the same principal. A
security policy thus established determines what actions
code executor 210 will allow the code within code stream
220 to perform. The use of typed permissions and protection
domains allows policies that go beyond a simple trusted/
untrusted dichotomy by allowing relatively complex per-
mission groupings and relationships.

Protection domains and policies that may be used in
conjunction with typed permissions shall now be described
in greater detail with continued reference to FIG. 2.

PROTECTION DOMAINS AND PERMISSIONS

According to an embodiment of the present invention,
protection domains are used to enforce security within
computer systems. A protection domain can be viewed as a
set of permissions granted to one or more principals. A
permission is an authorization by the computer system that
allows a principal to execute a particular action or function.
Typically, permissions involve an authorization to perform
an access to a computer resource in a particular manner. An
example of an authorization is an authorization to “write” to
a particular directory in a file system (e.g. /home).

A permission can be represented in numerous ways in a
computer system. For example, a data structure containing
text instructions can represent permissions. An instruction

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page39 of 161

US 6,192,476 B1

9

such as “permission write /somedirectory/somefile” denotes
a permission to write to file “somefile” in the directory
“/somedirectory.” The instruction denotes which particular
action is authorized, and the computer resource upon which
that particular action is authorized. In this example, the
particular action authorized is to “write.” The computer
resources upon which the particular action is authorized is a
file (“/somedirectory/somefile”) in a file system of computer
system 100. Note that in the example provided the file and
the directory in which the file is contained are expressed in
a conventional form recognized by those skilled in the art.
Permissions can also be represented by objects, herein
referred to as permission objects. Attributes of the object
represent a particular permission. For example, an object can
contain an action attribute of “write,” and a target resource
attribute of “/somedirectory.” A permission object may have
one or more permission validation methods which determine
whether a requested permission is authorized by the par-
ticular permission represented by the permission object.

POLICIES

The correlation between permissions and principals con-
stitutes the security policy of the system. The policy of the
system may be represented by one or more files containing
instructions. Each instruction establishes a mapping between
a particular code identifier and a particular authorized per-
mission. The permission identified in an instruction applies
to all objects that belong to the classes that are associated
with the code identifier identified in the instruction.

FIG. 2 illustrates an exemplary policy implemented
through use of a policy file 244. The format of an instruction
in exemplary policy file 244 is:

<“permission”> <URL> <key name> <action> <target>
The combination of the <URL> and the key that corresponds
to <key name> constitute a code identifier; the <action> and
<target> represent a permission. A key is associated with a
key name. The key and the corresponding key name are
stored together in a key database. The key name can be used
to find the key in the key database. For example, consider the
following instruction:

File://somesource some key write /tmp/* The above
instruction represents an authorization of a permission
to write to any file in “/tmp/*” by any object that
belongs to the class associated with code identifier
“file://somesource” -“some key” (i.e. URL-key name).

IMPLIED PERMISSIONS

One permission does not have to exactly match another
permission to be considered “encompassed” by the other
permission. When a first permission encompasses a second
permission without matching the second permission, the first
permission is said to “imply” the second permission. For
example, a permission to write to any file in a directory, such
“c:/”, implies a permission to write to any specific file in the
directory, such as “c:/thisfile”.

If a permission is represented by a permission object, the
validation method for the permission object contains code
for determining whether one permission is implied by
another. For purposes of illustration, a permission to write to
any file in a directory implies a permission to write to any
specific file in that directory, and a permission to read from
any file in a directory implies a permission to read from any
specific file in that directory, however, a permission to write
does not imply a permission to read.

POLICY IMPLEMENTING OBJECTS

Avariety of objects may be used to implement the policy
represented by the code identifiers to permissions mapping

10

15

20

25

30

35

40

45

50

55

60

65

10

contained in policy file 244. According to the embodiment
illustrated in FIG. 2, in order to efficiently and conveniently
implement the policy, policy object 242, domain mapper
object 248, and one or more protection domain objects 250
are provided.

Policy object 242 is an object for storing the policy
information obtained, for example, from policy file 244.
Specifically, policy object 242 provides a mapping of code
identifiers to permissions, and is constructed based on the
instructions within policy file 244. Within the policy object
242, the code identifiers and their associated authorized
permissions may be represented by data structures or
objects.

Protection domain objects 250 are created on demand
when new classes are received by code executor 210. When
a new class is received, domain mapper 248 determines
whether a protection domain is already associated with the
code identifier. The domain mapper maintains data indicat-
ing which protection domains have been created and the
code identifiers associated with the protection domains. If a
protection domain is already associated with the code
identifier, the domain mapper adds a mapping of the new
class and protection domain to a mapping of classes and
protection domains maintained by the domain mapper 248.

If a protection domain object is not associated with the
code identifier of the new class, a new protection domain
object is created and populated with permissions. The pro-
tection domain is populated with those permission that are
mapped to the code identifier of the new class based on the
mapping of code identifiers to permissions in the policy
object. Finally, the domain mapper adds a mapping of the
new class and protection domain to the mapping of classes
and protection domains as previously described.

In other embodiments of the invention, instead of storing
the mapping of classes to protection domains in a domain
mapper object, the mapping is stored as static fields in the
protection domain class. The protection domain class is the
class to which protection domain objects belong. There is
only one instance of a static field for a class no matter how
many objects belong to the class. The data indicating which
protection domains have been created and the code sources
associated with the protection domains is stored in static
fields of the protection domain class. Alternatively, a map-
ping between a class and protections domains associated
with the class is stored as static fields in the class.

Static methods are used to access and update the static
data mentioned above. Static methods are invoked on behalf
of the entire class, and may be invoked without referencing
a specific object.

EXEMPLARY CALL STACK

The permission objects, protection domain objects and
policy objects described above are used to determine the
access rights of a thread. According to an aspect of the
invention, such access rights vary over time based on what
code the thread is currently executing, and which code
invoked the code that is currently executing. The sequence
of calls that resulted in execution of the currently executing
code of a thread is reflected in the call stack of the thread.

FIG. 3 illustrates an example of a call stack of a thread as
it exists at a particular point in time. Reference to the
exemplary call stack shall be made to explain the operation
of a security mechanism that enforces access rights in a way
that allows the rights of the thread to vary over time.

Referring to FIG. 3, it is a block diagram that includes a
call stack 308 associated with a thread 306 in which the

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page40 of 161

US 6,192,476 B1

11

method 340-1 of an object 240-1 calls the method 340-2 of
another object 240-2 that calls the method 340-3 of yet
another object 240-3 that calls a check permission method
382 of an access controller object 380.

Thread 306 is a thread executing on computer system 100.
Call stack 308 is a stack data structure representing a calling
hierarchy of the methods invoked by thread 306 at any given
instance. At the instance illustrated in FIG. 3, call stack 308
contains a frame 310 for each invocation of a method by a
thread and not exited by that thread.

Each frame 310 corresponds to the method that has been
called but not exited by thread 306. The relative positions of
the frames on the call stack 308 reflect the invocation order
of the methods that correspond to the frames. When a
method is exited, the frame 310 that corresponds to the
method is removed from the top of the call stack 308. When
a method is invoked, a frame corresponding to the method
is added to the top of the call stack 308.

Each frame contains information about the method and
object that correspond to the frame. From this information
the class of method can be determined by invoking a “get
class” method provided for every object by the code execu-
tor 210. From the mapping in domain mapper object 248, the
protection domain associated with the class, object, and
method for given frame 310 can be determined.

For example, assume thread 306 invokes method 340-1.
While executing method 340-1 thread 306 invokes method
340-2, while executing method 340-2 thread 306 invokes
method 340-3, and while executing method 340-3 thread
306 invokes method 382. At this point, call stack 308
represents the calling hierarchy of methods as shown in FIG.
3. Frame 310-4 corresponds to method 382, frame 310-3 to
method 340-3, method 340-2 to frame 310-2, and method
340-1 to frame 310-1. When thread 306 exits method 382,
frame 310-4 is removed from the stack.

METHOD/PERMISSION RELATIONSHIPS

Each method on the call stack is associated with a set of
permissions. The set of permissions for a given method is
determined by the protection domain associated with the
source from which the code for the given method was
received. The relationship between methods, protection
domains and permissions shall now be described with con-
tinued reference to FIG. 3.

For the purposes of illustration, it shall be assumed that
Object 240-1 corresponds to part of a user interface. The
code associated with the class to which object 240-1 belongs
is received from a remote source. File access for remote
code by default is limited to a default directory in accor-
dance with the security policy of the administrators of
computer system 100.

Protection domain object 250-1 is mapped to the class of
object 240-1. Protection domain object 250-1 is associated
with two permissions, which are a permission to “write” to
“e:/tmp” and to “read” from “e:/tmp.” Therefore, method
340-1 is authorized to write and read from “e:/tmp”.

Method 340-1 invokes method 340-2 of object 240-2.
Object 240-2 is a password manager that is associated with
methods for managing passwords for computer system 100.
Passwords are contained in two files, “c:/sys/pwd” and
“d:/sys/pwd.” Method 340-2 is a method that adds a pass-
word to one of the files.

Protection domain object 250-2 is mapped to the class of
object 240-2. Accordingly, protection domain object 250-2
contains two permissions, a permission to “write” to “c:/
sys/pwd” and a permission to write to “d:/sys/pwd.”

10

15

20

25

35

40

45

50

55

60

65

12

Method 340-2 invokes method 340-3 of object 240-3.
Object 240-3 is a resource manager that contains methods
for managing a system directory disk “d:/sys”. Method
340-3 is a method to update a record in a file in the directory
“d:/sys”.

Protection domain object 250-3 is mapped to the class of
object 240-3. Accordingly, protection domain object 250-3
is associated with two permissions: a permission to “write”
to “d:/sys/*” and a permission to read to “read” from
“d:/sys/*”.

While protection domain objects are used to organize and
determine the access rights of a particular method, some
mechanism must be provided to determine the access rights
of a thread whose call stack contains multiple methods
whose code arrived from multiple sources. According to one
embodiment of the invention, this determination is per-
formed by an access controller, as shall be described in
greater detail hereafter.

EXEMPLARY ACCESS CONTROLLER

According to an embodiment of the invention, an access
controller is used to determine whether a particular action
may be performed by a principal. Specifically, before a
resource management object accesses a resource, the
resource management object (e.g. object 340-3) invokes a
check permission method of an access controller object 380.
In the illustrated example, the resource manager method
340-3 invokes a check permission method 382 of access
controller object 380 to determine whether access to the
password file is authorized. To make this determination, the
check permission method 282 of the access controller 380
performs the steps that shall be described hereafter with
reference to FIG. 4.

DETERMINING WHETHER AN ACTION IS
AUTHORIZED

According to an embodiment of the invention, an action
is authorized if the permission required to perform the action
is included in each protection domain associated with the
thread when a request to determine an authorization is made.
A permission is said to be included in a protection domain
if that permission is encompassed by one or more permis-
sions associated with the protection domain. For example, if
an action requires permission to write to file in the “e:/tmp”
directory, then that required permission is included in pro-
tection domain object 250-1 because protection domain
object 250-1 is explicitly associated with that permission.

Assume that thread 306 is executing method 310-3 when
thread 306 makes a request for a determination of whether
an action is authorized by invoking the check permission
method 382. Assume further that thread 306 has invoked
method 340-1, method 340-2, and method 310-3 has not
exited them when thread 306 invoked method 382. The
protection domains associated with thread 306 when the
request for a determination of authorization is made are
represented by protection domain object 250-1, protection
domain object 250-2, and protection domain object 250-3.

Note that given the calling hierarchy present in the current
example, the required permission to perform an action of
writing to file “d:/sys/pwd” is not authorized for thread 306
because the required permission is not encompassed by the
only permission included in protection domain object 250-1
(i.e. write to “e:/tmp”).

PRIVILEDGED METHODS

Sometimes the need arises to authorize an action that a
method performs irrespective of the protection domains

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page4l of 161

US 6,192,476 B1

13

associated with the methods that precede the method in the
calling hierarchy of a thread. Updating a password is an
example of when such a need arises.

Specifically, because the security of a password file is
critical, the permissions required to update the password file
are limited to very few specialized protection domains.
Typically, such protection domains are associated with
methods of objects from code that is “trusted” and that
provides its own security mechanisms. For example, a
method for updating a password may require the old pass-
word of a user when updating that user with a new password.

Because permissions to update passwords are limited to
code from limited sources, code from all other sources will
not be allowed to update the passwords. This is true even in
situations such as that shown in FIG. 3, where the code from
a remote source (method 340-1) attempts to change the
password by invoking the trusted code (method 340-3)
which has permission to update the password. Access is
denied in these situations because at least one method in the
calling hierarchy (method 340-1) does not have the neces-
sary permission.

According to one embodiment of the invention, a privi-
lege mechanism is provided to allow methods that do not
themselves have the permission to perform actions to nev-
ertheless cause the actions to be performed by calling special
“privileged” methods that do have the permissions. This
result is achieved by limiting the protection domains that are
considered to be “associated with a thread” to only those
protection domains that are associated with a “privileged”
method and those methods that are subsequent to the privi-
leged method in the calling hierarchy.

A method may cause itself to be privileged (i.e. enable the
privilege mechanism) by invoking a method of a privilege
object called, for example, beginPrivilege. A method may
cause itself to become not privileged (i.e. disable the privi-
lege mechanism) by invoking another method of the privi-
lege object called, for example, end privilege. The following
code example illustrates one technique for invoking methods
which enable or disable the privilege mechanism. Although
the code example may resemble the JAVA programming
language by Sun Microsystems Inc., the example is merely
for illustrative purposes and is not meant to be representative
of an actual code implementation.

Privileged p = new Privileged();
p-beginPrivilege();
try {
[sensitive code]
} finally {
p.endPrivilege();

The first line of the code example creates a privilege
object. The second invokes a beginPrivilege method of the
privilege object that enables the privilege mechanism. The
“try finally” statement ensures that the block of code fol-
lowing the “finally” is executed regardless of what happens
during execution of the block between the “try” and
“finally”. Thus the privilege disabling method of the privi-
lege object (“p.endPrivilege()”) is always invoked.

The above code can be used, for example, to bound the
portion of method 340-3 that actually accesses the password
file. The portion that accesses the password file would be
contained in the block designated as “[sensitive code]”. The
technique illustrated by the above code example explicitly

10

15

20

25

30

35

40

45

50

55

60

65

14

places the responsibility of enabling and disabling the privi-
lege mechanism upon the programmer.

Often, while executing a privileged method, a thread may
invoke subsequent methods associated with other protection
domains that do not include permissions included in the
privileged protection domain. When a thread is executing a
subsequent method, an action requested by the thread is only
authorized if the required permission is encompassed in the
protection domains associated with the subsequent method
and any methods in the calling hierarchy between the
subsequent method and privileged method, inclusively. The
advantage of the limiting the privilege mechanism in this
manner is to prevent methods of untrusted code from
effectively “borrowing” the permissions associated with
privileged methods of trusted code when the methods of the
untrusted code are invoked by the trusted methods.

In an alternate embodiment of the invention, a method
causes itself to be privileged or not privileged by invoking
static methods of the access controller class. The access
controller class is the class to which access controller objects
belong. As demonstrated in the following code example,
using static methods that are associated with the access
controller class avoids the need of having to create a
privilege object in order to enable the privilege mechanism.

The following code example illustrates one technique for
invoking methods which enable or disable the privilege
mechanism. Assume for purposes of illustration that the
access controller class name is AccessControl. Although the
code example may resemble the Java programming lan-
guage by Sun Microsystems Inc., the example is merely for
illustrative purposes and is not meant to be representative of
an actual code implementation.

AccessControl.beginPrivilege();
try {
[sensitive code]
} finally {
AccessControl.endPrivilege();
¥

ENABLING INVOCATIONS

A thread may invoke the same method at different levels
in a calling hierarchy. For example, a method X may call a
method Y which may call method X. Consequently, a
method such as method 340-2 that is invoked as a privileged
method could be invoked a second time without enabling the
privilege mechanism in the second invocation. To properly
determine the protection domains associated with a thread
while the privilege mechanism is enabled, a mechanism is
provided to track which invocation of the privileged method
enabled the privilege mechanism. The invocation in which a
thread enables the privilege mechanism is referred to as a
enabling invocation.

One technique to track which invocations of a particular
method are enabling invocations is to set a flag (e.g. privi-
lege flag 312) in the frame 310 corresponding to each
enabling invocation. This may be accomplished by setting
the privilege flag 312 in the frame corresponding to each
enabling invocation. The flag may be set, for example, when
the privilege enabling method of each privilege enabling
object is invoked during execution of a method.

According to one embodiment of the invention, each
frame has a privilege flag value. When any frame is added
to the call stack 380, the initial value of the privilege flag

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page42 of 161

US 6,192,476 B1

15

indicates that the corresponding method is not privileged.
The privilege flag of any frame is only set to a value
indicating the corresponding method is privileged when the
corresponding method enables the privilege. After a method
that enables the privilege mechanism is exited, the value of
the privilege flag 312 will not carry over to the next
invocation of the method. The value will not carry over
because when the new frame corresponding to the method is
added to the call stack 308, the initial value of the privilege
flag is set to indicate that the corresponding method is not
privileged. Maintaining the value of the privilege status flag
in this manner disables the privilege mechanism when a
privileged method is exited regardless of whether the privi-
lege mechanism is explicitly disabled by the programmer.

While one method of tracking which invocations are
enabling invocation is described above, various alternative
methods of tracking enabling invocations are possible.
Therefore, it is understood that the present invention is not
limited to any specific method for tracking enabling invo-
cations.

The method shown in FIG. 4 shall now be described with
reference to the thread 306 and stack 308 illustrated in FIG.
3. Assume for example, that thread 306 is executing a user
interface method 340-1 to update a password. To update the
password, thread 306 then invokes method 340-2 (the
method to update a password), then method 340-3 (the
method to update a file). Assume further that method 340-2
is privileged.

In step 410, the request for a determination of whether an
action is authorized is received. After detecting that a request
for an action to update the password file has been detected
by invoking method 340-3, the permission required to
perform the action is determined.

In the present example, the action is updating the pass-
word file and the required permission to perform the action
is “write” to file “d:/sys/pwd”. A request is made to deter-
mine whether the action is authorized by invoking the check
permission method 382 of the access controller 380, passing
in as a parameter the permission required to perform the
action. Note the current state of call stack 308 is shown in
FIG. 3.

Steps 430, 440, 450 and 460 define a loop in which
permissions associated with the methods in the call stack are
checked. The loop continues until a privileged method is
encountered, or all of the methods in the call stack of have
been checked. For the purposes of explanation, the method
whose privileges are currently being checked is referred to
as the “selected method”.

In step 430, a determination is made as to whether one of
the permissions associated with the selected method encom-
passes the permission required. The permissions associated
with a method are the permissions associated with the
protection domain that is associated with the method. If the
determination made in step 430 is that a permission asso-
ciated with the selected method encompasses the permission
required, control passes to step 440.

During the first iteration of the loop, the frame that
immediately precedes the frame associated with the check
permission method of the access controller is inspected. In
this example, the frame associated with the check permis-
sion method 382 is frame 310-4. The frame that immediately
precedes frame 310-4 is frame 310-3. Consequently, during
the first iteration of the loop, frame 310-3 will be inspected.
Frame 310-3 is associated with method 340-3, which is
associated with protection domain 250-3. Because a permis-
sion associated with protection domain object 250-3

10

15

20

25

40

45

50

55

60

65

16

(permission to “write” to “d:/sys/*”) encompasses the per-
mission required (i.e. “write” to “d:/sys/pwd”), control
passes to step 440.

In step 440, a determination is made of whether the
invocation of a selected method represents the enabling
invocation. This determination is based on the privilege flag
312 of frame 310 corresponding to the invocation of the
selected method. If the determination is that the invocation
of the selected method does not represent the enabling
invocation, control passes to step 450. In this example, the
privilege status of frame 310-3 is not set to indicate that the
frame represents the enabling invocation, thus control passes
to step 450.

In steps 450, the next method is selected. The next method
is the method corresponding to frame below the current
frame based on the calling hierarchy represented by call
stack 308. In this example, the frame below the current
frame 310-3 is frame 310-2. The method corresponding to
frame 310-2 is method 340-2.

In step 460, a determination is made of whether a method
was selected in step 450. If a method was selected, control
reverts to step 430.

In the current example, control passes to step 430 because
method 340-2 was selected. In step 430, the determination
made is that the protection domain associated with method
340-2 (protection domain object 250-2) includes a permis-
sion encompassing the permission required (“write” to “d:/
sys/pwd”) because a permission associated with protection
domain object 250-2 (“write” to “d:/sys/pwd”) explicitly
encompasses the permission required. Control passes to step
440.

In step 440, the determination made is that the invocation
of a selected method represents the enabling invocation
because the privilege flag 312 indicates that the invocation
corresponding to frame 310-2 is an enabling invocation. A
message is transmitted indicating the permission request is
valid. Then, performance of the steps ends.

Note that by exiting the performance of the steps at step
440 when the selected method represents the enabling
invocation, the authorization of the requested action is based
on the privileged protection domain and any protection
domains associated with methods invoked after the invoca-
tion of the enabling invocation.

Assume in the current example that the privilege mecha-
nism was never invoked. Thus in step 440, the determination
made is that invocation of a selected method does not
represent the enabling invocation because the privilege flag
312 indicates that the invocation corresponding to frame
310-2 is not an enabling invocation.

In steps 450, the next method selected is method 340-1
because the frame below the current frame 310-2 is frame
310-1 and the method corresponding to frame 310-1 is
method 340-1. In step 460, the determination made is that a
next method was selected in step 450, thus control reverts to
step 430.

In step 430, the determination made is that the protection
domain associated with method 340-1 (protection domain
object 250-1) does not include the permission required
(“write” to “d:/sys/pwd”) because no permission associated
with protection domain object 250-1 (i.e. “e:/tmp” the only
permission associated with the protection domain) encom-
passes the permission required. Control then passes to step
490.

In step 490, a message indicating that the requested action
is not authorized is transmitted. In embodiment of the
invention, the message is transmitted by throwing an excep-
tion error.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page43 of 161

US 6,192,476 B1

17

Note that when at least one protection domain associated
with a thread does not include a permission encompassing
the permission required, the action requested is not autho-
rized. An action is authorized only when all the protection
domains associated with a thread when making the request
for a determination of whether the action is authorized
include the permission required.

In one embodiment of the invention, when a thread
(“parent thread”) causes the spawning of another thread
(“child thread”), the protection domains associated with the
parent thread are “inherited” by the child thread. The pro-
tection domains may be inherited by, for example, retaining
the call stack of a parent thread when the child thread is
created. When the steps shown in FIG. 4 are executed to
determine whether an action is authorized, the call stack that
is traversed is treated as if it included the call stack of the
parent thread. In another embodiment of the invention, a
child thread does not inherit the protection domain of the
parent thread, and, accordingly, the call stack that is tra-
versed is treated as if it did not include the parent’s call
stack.

One advantage of basing the authorization of a thread to
perform an action on the protection domains associated with
the thread is that the permissions can be based on the source
of code the thread is executing. As mentioned earlier, objects
are created from class definitions in code received by code
executor 210. The source of code a thread is executing is the
source of code of the method. The source of code of a
method is the source of the class definition used to define the
class to which the method’s object belongs. Because the
protection domains are associated with the source of code of
a method, as described previously, the permissions autho-
rized for a thread can be based on the source of the code of
each method invoked by a thread. Thus, it can be organized
so that code from a particular source is associated with the
permissions appropriate for security purposes.

An advantage of the privilege mechanism described
above is that performance of sensitive operations in which
security is critical can be limited to methods from trusted
sources. Furthermore, these operations can be performed on
behalf of methods based on code from less secure sources.
Methods performing sensitive operations typically rely on
their own security mechanisms (e.g. password authentica-
tion methods). When a thread invokes the privilege
mechanism, the scope of the permissions of privileged
domain, which typically entail a high security risk, are
limited to the enabling invocation. This prevents a method
invoked within the privileged method, such as a method
based on untrusted code, from acquiring the capability to
perform operations posing a high security risk.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. The specification
and drawings are, accordingly, to be regarded in an illus-
trative rather than a restrictive sense.

What is claimed is:

1. A method for providing security, the method compris-
ing the steps of:

detecting when a request for an action is made by a

principal; and

in response to detecting the request, determining whether

said action is authorized based on permissions associ-
ated with a plurality of routines in a calling hierarchy
associated with said principal, wherein said permis-

10

15

20

25

30

45

50

55

60

65

18

sions are associated with said plurality of routines
based on a first association between protection domains
and permissions.

2. The method of claim 1, wherein:

the step of detecting when a request for an action is made

includes detecting when a request for an action is made
by a thread; and

the step of determining whether said action is authorized

includes determining whether said action is authorized
based on an association between permissions and a
plurality of routines in a calling hierarchy associated
with said thread.

3. The method of claim 1, wherein:

the calling hierarchy includes a first routine; and

the step of determining whether said action is authorized

further includes determining whether a permission
required to perform said action is encompassed by at
least one permission associated with said first routine.

4. The method of claim 1, wherein the step of determining
whether said action is authorized further includes determin-
ing whether a permission required to perform said action is
encompassed by at least one permission associated with
each routine in said calling hierarchy.

5. A method for providing security, the method compris-
ing the steps of:

detecting when a request for an action is made by a

principal,

determining whether said action is authorized based on an

association between permissions and a plurality of
routines in a calling hierarchy associated with said
principal;

wherein each routine of said plurality of routines is

associated with a class; and

wherein said association between permissions and said

plurality of routines is based on a second association
between classes and protection domains.

6. A method for providing security, the method compris-
ing the steps of:

detecting when a request for an action is made by a

principal; and

in response to detecting the request, determining whether

said action is authorized based on permissions associ-
ated with a plurality of routines in a calling hierarchy
associated with said principal, wherein a first routine in
said calling hierarchy is privileged; and

wherein the step of determining whether said action is

authorized further includes determining whether a per-
mission required to perform said action is encompassed
by at least one permission associated with each routine
in said calling hierarchy between and including said
first routine and a second routine in said calling
hierarchy, wherein said second routine is invoked after
said first routine, wherein said second routine is a
routine for performing said requested action.

7. The method of claim 6, wherein the step of determining
whether said permission required to perform said action is
encompassed by at least one permission associated with
each routine in said calling hierarchy between and including
said first routine and said second routine further includes the
steps of:

determining whether said permission required is encom-

passed by at least one permission associated with said
second routine; and

in response to determining said permission required is

encompassed by at least one permission associated with
said second routine, then performing the steps of:

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page44 of 161

US 6,192,476 B1

19

A) selecting a next routine from said plurality of
routines in said calling hierarchy,

B) if said permission required is not encompassed by at
least one permission associated with said next
routine, then transmitting a message indicating that
said permission required is not authorized, and

C) repeating steps A and B until:
said permission required is not authorized by at least

one permission associated with said next routine,
there are no more routines to select from said plu-
rality of routines in said calling hierarchy, or
determining that said next routine is said first rou-
tine.

8. The method of claim 7, wherein:

the method further includes the step of setting a flag

associated with said first routine to indicate that said

first routine is privileged; and

the step of determining that said next routine is said first

routine includes determining that a flag associated with

said next routine indicates said next routine is privi-
leged.

9. The method of claim 8, wherein the step of setting said
flag associated with said first routine includes setting a flag
in a frame in said calling hierarchy associated with said
thread.

10. A computer-readable medium carrying one or more
sequences of one or more instructions, the one or more
sequences of the one or more instructions including instruc-
tions which, when executed by one or more processors,
causes the one or more processors to perform the steps of:

detecting when a request for an action is made by a

principal; and

in response to detecting the request, determining whether

said action is authorized based on permissions associ-
ated with a plurality of routines in a calling hierarchy
associated with said principal, wherein said permis-
sions are associated with said plurality of routines
based on a first association between protection domains
and permissions.

11. The computer-readable medium of claim 10, wherein:

the step of detecting when a request for an action is made

includes detecting when a request for an action is made
by a thread; and

the step of determining whether said action is authorized

includes determining whether said action is authorized

based on an association between permissions and a

plurality of routines in a calling hierarchy associated

with said thread.

12. The computer readable medium of claim 10, wherein:

the calling hierarchy includes a first routine; and

the step of determining whether said action is authorized

further includes determining whether a permission

required to perform said action is encompassed by at
least one permission associated with said first routine.

13. The computer readable medium of claim 10, wherein
the step of determining whether said action is authorized
further includes determining whether a permission required
to perform said action is encompassed by at least one
permission associated with each routine in said calling
hierarchy.

14. A computer-readable medium bearing instructions for
providing security, the instructions including instructions for
performing the steps of:

detecting when a request for an action is made by a

principal;

determining whether said action is authorized based on an

association between permissions and a plurality of

routines in a calling hierarchy associated with said
principal;

10

15

20

25

30

40

45

50

55

60

65

20

wherein each routine of said plurality of routines is
associated with a class; and

wherein said association between permissions and said
plurality of routines is based on a second association
between classes and protection domains.

15. A computer-readable medium carrying one or more
sequences of one or more instructions, the one or more
sequences of the one or more instructions including instruc-
tions which, when executed by one or more processors,
causes the one or more processors to perform the steps of:

detecting when a request for an action is made by a

principal; and

in response to detecting the request, determining whether

said action is authorized based on permissions associ-

ated with a plurality of routines in a calling hierarchy
associated with said principal, wherein a first routine in
said calling hierarchy is privileged; and

wherein the step of determining whether said action is

authorized further includes determining whether a per-

mission required to perform said action is encompassed
by at least one permission associated with each routine
in said calling hierarchy between and including said
first routine and a second routine in said calling
hierarchy, wherein said second routine is invoked after

said first routine, wherein said second routine is a

routine for performing said requested action.

16. The computer readable medium of claim 15, wherein
the step of determining whether said permission required to
perform said action is encompassed by at least one permis-
sion associated with each routine in said calling hierarchy
between and including said first routine and said second
routine further includes the steps of:

determining whether said permission required is encom-

passed by at least one permission associated with said

second routine; and

in response to determining said permission required is

encompassed by at least one permission associated with

said second routine, then performing the steps of:

A) sclecting a next routine from said plurality of
routines in said calling hierarchy,

B) if said permission required is not encompassed by at
least one permission associated with said next
routine, then transmitting a message indicating that
said permission required is not authorized, and

C) repeating steps A and B until:
said permission required is not authorized by at least

one permission associated with said next routine,
there are no more routines to select from said plu-
rality of routines in said calling hierarchy, or
determining that said next routine is said first rou-
tine.

17. The computer readable medium of claim 16, wherein:

the computer readable medium further comprises one or

more instructions for performing the step of setting a

flag associated with said first routine to indicate that

said first routine is privileged; and

the step of determining that said next routine is said first

routine includes determining that a flag associated with

said next routine indicates said next routine is privi-
leged.

18. The computer readable medium of claim 17, wherein
the step of setting said flag associated with said first routine
includes setting a flag in a frame in said calling hierarchy
associated with said thread.

19. A computer system comprising:

a Processor;

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page45 of 161

US 6,192,476 B1

21

a memory coupled to said processor;

said processor being configured to detect when a request
for an action is made by a principal; and

said processor being configured to respond to detecting
the request by determining whether said action is
authorized based on permissions associated with a
plurality of routines in a calling hierarchy associated
with said principal, wherein said permissions are asso-
ciated with said plurality of routines based on a first
association between protection domains and permis-
sions.

20. The computer system of claim 19, wherein:

the calling hierarchy includes a first routine; and

5

10

22

said processor is configured to determine whether said
action is authorized by determining whether a permis-
sion required to perform said action is encompassed by
at least one permission associated with said first rou-
tine.

21. The computer system of claim 19, wherein

said processor is configured to determine whether said
action is authorized by determining whether a permis-
sion required to perform said action is encompassed by
at least one permission associated with each routine in
said calling hierarchy.

#* #* #* #* #*

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page46 of 161

EXHIBIT C

e e R A A A

US005966702A
United States Patent [(1] Patent Number: 5,966,702
Fresko et al. 451 Date of Patent: Oct. 12,1999
[54] METHOD AND APPARATUS FOR PRE- 5,829,006 10/1998 Parvathaneny et al.cc....... 707/101
PROCESSING AND PACKAGING CLASS 5,838,965 11/1998 Kavanagh et al. ..c.coccreveecrnccne 395/614
FILES Primary Examiner—Anton Fetting
[75] Tnventors: Nedim Fresko; Richard Tuck, both of ~ 4S5stan Examiner—Michacl Jl'(wanace’ Ir
San Francisco, Calif. Attorney, Agent, or Firm—Hecker & Harriman
[57] ABSTRACT
[73] Assignee: Sun Microsystems, Inc., Palo Alto,
Calif. A method and apparatus for pre-processing and packaging
class files. Embodiments remove duplicate information ele-
[21] Appl. No.: 08/961,874 ments from a set of class files to reduce the s.ize of indi\{idual
class files and to prevent redundant resolution of the infor-
[22] Filed: Oct. 31, 1997 mation elements. Memory allocation requirements are deter-
[51] It CLE oo GO6F 17/30 mined in ad\.fance for the set of clgsses as a whole to reduce
])] the complexity of memory allocation when the set of classes
[52] US. Cl e 707/1; 707/7; 707/103, are loaded. The class files are stored in a single package for
. 707/10 efficient storage, transfer and processing as a unit. In an
[58] Field of Searchcccccvvnnnnce. 707/7, 103, 100, embodiment, a pre-processor examines each class file in a
707/102, 200, 10 set of class files to locate duplicate information in the form
. of redundant constants contained in a constant pool. The
[56] References Cited duplicate constant is placed in a separate shared table, and
U.S. PATENT DOCUMENTS all occurrences of the constant are removed from the respec-
tive constant pools of the individual class files. During
5,303,149 4/1994 Janigianccoccoccoeeriiriiriiriins 364/408 pre-processing, memory allocation requirements are deter-
gﬂzg;’ggg 15 iggé %hetrllg ett all' : 322;288 mined for each class file, and used to determine a total
,488, urtle et al. ..ooeeeevieniinereeeene . .
5548758 8/1996 Pirahesh et al.oorooreoeoe.... 395/600 al%ﬁcatfn requlremeﬁ” for the set of class ﬁles. Ehe Sélareg
5.717.915 2/1998 Stolfo et al. 395/605 table, the memory allocation requirements and the reduce
5732265 3/1998 Dewitt et al. 395/616 class files are packaged as a unit in a multi-class file.
5,813,009 9/1998 Johnson et al. 707/100
5,826,265 10/1998 Van Huben et al. . e 707/8 23 Claims, 6 Drawing Sheets

SET OF CLASS
FILES "S"

400

| READ AND PARSE ALL CLASSES IN "S"

401

v

402

‘ DETERMINE CONSTANTS SHARED BETWEEN CLASSES IN "S”

v

403

‘ CREATE SHARED CONSTANT TABLE

v

REMOVE DUPLICATE, SHARED CONSTANTS FROM
INDIVIDUAL CONSTANT TABLES FOR EACH CLASS

404

v

COMPUTE MEMORY REQUIREMENTS FOR EACH CLASS IN
"S", ASSUMING EACH CLASS IS LOADED SEPARATELY

405

v

COMPUTE TOTAL MEMORY
REQUIREMENT FOR LOADING "S”

406

v

GENERATE MCLASS FILE CONTAINING: | 407
1) SHARED CONSTANT TABLE
2) MEMORY ALLOCATION REQ'S
3) CLASS FILES WITH REDUCED
INDIVIDUAL CONSTANT TABLES

"S" MCLASS FILE

408

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page48 of 161

U.S. Patent Oct. 12,1999 Sheet 1 of 6 5,966,702
100
N
105 106 107
Z AN /

JAVA "CLASS" CLASS FILES
[IAVA SOURCE FILES "’ COMPILER |‘" (BYTE CODES))

? 104 108 I
J A\éﬁ \%%%%ﬁg%?m N INDIVIDUAL
103 [wEB CLASSES

JAVA CORE CLASSES I/ SERVER
SERVER
———
— NETWORK 10] —— —— URL 109
' 102
| Z

111 A 4
\] JAVA VIRTUAL
MACHINE (JVM)

FIGURE 1
A NATIVE O/S CALLS |

112

CLIENT PLATFORM

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page49 of 161

5,966,702

Sheet 2 of 6

Oct. 12,1999

U.S. Patent

— LSOH V/

dSI

00¢

LANYHINI

ATAUHS

N\
ece I9VIOLS
212 SSVIN 500N AQIVOIAT
11T
H o
122 NI INI
MAOMLIAN WINOD N
w
AN
T /
0ce AJOWAN AIOWIN
- A Nvw OadIA
51T
QN
JNV
\ Al ¥ OAdIA
57z L1Z 61
91z
92z
¢ HANDIA

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page50 of 161

U.S. Patent Oct. 12,1999 Sheet 3 of 6 5,966,702

301 309

| MAGIC V [INTERFACES CNT |/
300 | MINOR VERSION |/302 310
N [MAJOR VERSION | 303 INTERFACES
CONST POOL CNT 08 311
.CONST POOL CNT }, [_FELDSCNT)}/

305 312
) FIELDS
CONSTANT POOL ETIODE CNT 313
314
METHODS
315

306
[_ACCESS FLAGS |/ [ATTRIBUTES CNT)/
307

316
—_— 308 ATTRIBUTES
[__SUPER CLASS }/

FIGURE 3

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page51 of 161

U.S. Patent Oct. 12,1999 Sheet 4 of 6 5,966,702

400
SET OF CLASS

FILES "S" FIGURE 4

401
READ AND PARSE ALL CLASSES IN "S"

402
DETERMINE CONSTANTS SHARED BETWEEN CLASSES IN "S"

403

CREATE SHARED CONSTANT TABLE

404

REMOVE DUPLICATE, SHARED CONSTANTS FROM
INDIVIDUAL CONSTANT TABLES FOR EACH CLASS

405
COMPUTE MEMORY REQUIREMENTS FOR EACH CLASS IN
'S", ASSUMING EACH CLASS IS LOADED SEPARATELY

406
COMPUTE TOTAL MEMORY

REQUIREMENT FOR LOADING "S"

GENERATE MCLASS FILE CONTAINING: | 407
1) SHARED CONSTANT TABLE 4
2) MEMORY ALLOCATION REQ'S
3) CLASS FILES WITH REDUCED
INDIVIDUAL CONSTANT TABLES

408
| "S" MCLASS FILE I/

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page52 of 161

U.S. Patent Oct. 12, 1999 Sheet 5 of 6 5,966,702
500
yd
MCLASS FILE
501
yd
SHARED CONSTANT POOL TABLE
502 I
MEMORY ALLOCATION REQUIREMENTS I/
503
INDIVIDUAL CLASSES L

CLASS 1 CLASS N

REDUCED REDUCED
CONSTANT CONSTANT

POOL TABLE 1 POOL TABLE N

FIGURE 5

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page53 of 161

U.S. Patent Oct. 12,

1999 Sheet 6 of 6 5,966,702

RUNTIME DATA AREAS 600

PCREG1 PCREGM

HEAP
601

N 602

STACK 1 STACK M

METHOD AREA

ALLOCATED TO "S"

603 REDUCED
A\ CONSTANT
POOL 1

REDUCED
CONSTANT
POOLN

604

N SHARED
CONSTANT
POOL

FIGURE 6

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page54 of 161

5,966,702

1

METHOD AND APPARATUS FOR PRE-
PROCESSING AND PACKAGING CLASS
FILES

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of computer software,
and, more specifically, to object-oriented computer applica-
tions.

Portions of the disclosure of this patent document contain
material that is subject to copyright protection. The copy-
right owner has no objection to the facsimile reproduction
by anyone of the patent document or the patent disclosure as
it appears in the Patent and Trademark Office file or records,
but otherwise reserves all copyright rights whatsoever.

2. Background Art

With advancements in network technology, the use of
networks for facilitating the distribution of media
information, such as text, graphics, and audio, has grown
dramatically, particularly in the case of the Internet and the
World Wide Web. One area of focus for current develop-
mental efforts is in the field of web applications and network
interactivity. In addition to passive media content, such as
HTML definitions, computer users or “clients” coupled to
the network are able to access or download application
content, in the form of applets, for example, from “servers”
on the network.

To accommodate the variety of hardware systems used by
clients, applications or applets are distributed in a platform-
independent format such as the Java® class file format.
Object-oriented applications are formed from multiple class
files that are accessed from servers and downloaded indi-
vidually as needed. Class files contain bytecode instructions.
A “virtual machine” process that executes on a specific
hardware platform loads the individual class files and
executes the bytecodes contained within.

A problem with the class file format and the class loading
process is that class files often contain duplicated data. The
storage, transfer and processing of the individual class files
is thus inefficient due to the redundancy of the information.
Also, an application may contain many class files, all of
which are loaded and processed in separate transactions.
This slows down the application and degrades memory
allocator performance. Further, a client is required to main-
tain a physical connection to the server for the duration of
the application in order to access class files on demand.

These problems can be understood from a review of
general object-oriented programming and an example of a
current network application environment.

Object-Oriented Programming

Object-oriented programming is a method of creating
computer programs by combining certain fundamental
building blocks, and creating relationships among and
between the building blocks. The building blocks in object-
oriented programming systems are called “objects.” An
object is a programming unit that groups together a data
structure (one or more instance variables) and the operations
(methods) that can use or affect that data. Thus, an object
consists of data and one or more operations or procedures
that can be performed on that data. The joining of data and
operations into a unitary building block is called “encapsu-
lation.”

An object can be instructed to perform one of its methods
when it receives a “message.” A message is a command or

10

15

20

25

30

35

40

45

50

55

60

65

2

instruction sent to the object to execute a certain method. A
message consists of a method selection (e.g., method name)
and a plurality of arguments. A message tells the receiving
object what operations to perform.

One advantage of object-oriented programming is the way
in which methods are invoked. When a message is sent to an
object, it is not necessary for the message to instruct the
object how to perform a certain method. It is only necessary
to request that the object execute the method. This greatly
simplifies program development.

Object-oriented programming languages are predomi-
nantly based on a “class” scheme. The class-based object-
oriented programming scheme is generally described in
Lieberman, “Using Prototypical Objects to Implement
Shared Behavior in Object-Oriented Systems,” OOPSLA 86
Proceedings, September 1986, pp. 214-223.

A class defines a type of object that typically includes both
variables and methods for the class. An object class is used
to create a particular instance of an object. An instance of an
object class includes the variables and methods defined for
the class. Multiple instances of the same class can be created
from an object class. Each instance that is created from the
object class is said to be of the same type or class.

To illustrate, an employee object class can include “name™
and “salary” instance variables and a “set_salary” method.
Instances of the employee object class can be created, or
instantiated for each employee in an organization. Each
object instance is said to be of type “employee.” Each
employee object instance includes “name” and “salary”
instance variables and the “set salary” method. The values
associated with the “name” and “salary” variables in each
employee object instance contain the name and salary of an
employee in the organization. A message can be sent to an
employee’s employee object instance to invoke the “set
salary” method to modify the employee’s salary (i.e., the
value associated with the “salary” variable in the employee’s
employee object).

A hierarchy of classes can be defined such that an object
class definition has one or more subclasses. A subclass
inherits its parent’s (and grandparent’s etc.) definition. Each
subclass in the hierarchy may add to or modify the behavior
specified by its parent class. Some object-oriented program-
ming languages support multiple inheritance where a sub-
class may inherit a class definition from more than one
parent class. Other programming languages support only
single inheritance, where a subclass is limited to inheriting
the class definition of only one parent class. The Java
programming language also provides a mechanism known
as an “interface” which comprises a set of constant and
abstract method declarations. An object class can implement
the abstract methods defined in an interface. Both single and
multiple inheritance are available to an interface. That is, an
interface can inherit an interface definition from more than
one parent interface.

An object is a generic term that is used in the object-
oriented programming environment to refer to a module that
contains related code and variables. A software application
can be written using an object-oriented programming lan-
guage whereby the program’s functionality is implemented
using objects.

A Java program is composed of a number of classes and
interfaces. Unlike many programming languages, in which a
program is compiled into machine-dependent, executable
program code, Java classes are compiled into machine
independent bytecode class files. Each class contains code
and data in a platform-independent format called the class

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page55 of 161

5,966,702

3

file format. The computer system acting as the execution
vehicle contains a program called a virtual machine, which
is responsible for executing the code in Java classes. The
virtual machine provides a level of abstraction between the
machine independence of the bytecode classes and the
machine-dependent instruction set of the underlying com-
puter hardware. A “class loader” within the virtual machine
is responsible for loading the bytecode class files as needed,
and either an interpreter executes the bytecodes directly, or
a “just-in-time” (JIT) compiler transforms the bytecodes into
machine code, so that they can be executed by the processor.
FIG. 1 is a block diagram illustrating a sample Java network
environment comprising a client platform 102 coupled over
a network 101 to a server 100 for the purpose of accessing
Java class files for execution of a Java application or applet.

Sample Java Network Application Environment

In FIG. 1, server 100 comprises Java development envi-
ronment 104 for use in creating the Java class files for a
given application. The Java development environment 104
provides a mechanism, such as an editor and an applet
viewer, for generating class files and previewing applets. A
set of Java core classes 103 comprise a library of Java
classes that can be referenced by source files containing
other/new Java classes. From Java development environ-
ment 104, one or more Java source files 105 are generated.
Java source files 105 contain the programmer readable class
definitions, including data structures, method implementa-
tions and references to other classes. Java source files 105
are provided to Java compiler 106, which compiles Java
source files 105 into compiled “.class” files 107 that contain
bytecodes executable by a Java virtual machine. Bytecode
class files 107 are stored (e.g., in temporary or permanent
storage) on server 100, and are available for download over
network 101.

Client platform 102 contains a Java virtual machine
(JVM) 111 which, through the use of available native
operating system (O/S) calls 112, is able to execute bytecode
class files and execute native O/S calls when necessary
during execution.

Java class files are often identified in applet tags within an
HTML (hypertext markup language) document. A web
server application 108 is executed on server 100 to respond
to HTTP (hypertext transport protocol) requests containing
URLs (universal resource locators) to HTML documents,
also referred to as “web pages.” When a browser application
executing on client platform 102 requests an HTML
document, such as by forwarding URL 109 to web server
108, the browser automatically initiates the download of the
class files 107 identified in the applet tag of the HTML
document. Class files 107 are typically downloaded from the
server and loaded into virtual machine 111 individually as
needed.

It is typical for the classes of a Java program to be loaded
as late during the program’s execution as possible; they are
loaded on demand from the network (stored on a server), or
from a local file system, when first referenced during the
Java program’s execution. The virtual machine locates and
loads each class file, parses the class file format, allocates
memory for the class’s various components, and links the
class with other already loaded classes. This process makes
the code in the class readily executable by the virtual
machine.

The individualized class loading process, as it is typically
executed, has disadvantages with respect to use of storage
resources on storage devices, allocation of memory, and

10

15

20

25

30

35

40

45

50

55

60

65

4

execution speed and continuity. Those disadvantages are
magnified by the fact that a typical Java application can
contain hundreds or thousands of small class files. Each
class file is self-contained. This often leads to information
redundancy between class files, for example, with two or
more class files sharing common constants. As a result,
multiple classes inefficiently utilize large amounts of storage
space on permanent storage devices to separately store
duplicate information. Similarly, loading each class file
separately causes unnecessary duplication of information in
application memory as well. Further, because common con-
stants are resolved separately per class during the execution
of Java code, the constant resolution process is unnecessar-
ily repeated.

Because classes are loaded one by one, each small class
requires a separate set of dynamic memory allocations. This
creates memory fragmentation, which wastes memory, and
degrades allocator performance. Also, separate loading
“transactions” are required for each class. The virtual
machine searches for a class file either on a network device,
or on a local file system, and sets up a connection to load the
class and parse it. This is a relatively slow process, and has
to be repeated for each class. The execution of a Java
program is prone to indeterminate pauses in response/
execution caused by each class loading procedure,
especially, when loading classes over a network. These
pauses create a problem for systems in which interactive or
real-time performance is important.

A further disadvantage of the individual class loading
process is that the computer executing the Java program
must remain physically connected to the source of Java
classes during the duration of the program’s execution. This
is a problem especially for mobile or embedded computers
without local disk storage or dedicated network access. If the
physical connection is disrupted during execution of a Java
application, class files will be inaccessible and the applica-
tion will fail when a new class is needed. Also, it is often the
case that physical connections to networks such as the
Internet have a cost associated with the duration of such a
connection. Therefore, in addition to the inconvenience
associated with maintaining a connection throughout appli-
cation execution, there is added cost to the user as a result
of the physical connection.

A Java archive (JAR) format has been developed to group
class files together in a single transportable package known
as a JAR file. JAR files encapsulate Java classes in archived,
compressed format. AJAR file can be identified in an HTML
document within an applet tag. When a browser application
reads the HTML document and finds the applet tag, the JAR
file is downloaded to the client computer and decompressed.
Thus, a group of class files may be downloaded from a
server to a client in one download transaction. After down-
loading and decompressing, the archived class files are
available on the client system for individual loading as
needed in accordance with standard class loading proce-
dures. The archived class files remain subject to storage
inefficiencies due to duplicated data between files, as well as
memory fragmentation due to the performance of separate
memory allocations for each class file.

SUMMARY OF THE INVENTION

A method and apparatus for pre-processing and packaging
class files is described. Embodiments of the invention
remove duplicate information elements from a set of class
files to reduce the size of individual class files and to prevent
redundant resolution of the information elements. Memory

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page56 of 161

5,966,702

5

allocation requirements are determined in advance for the
set of classes as a whole to reduce the complexity of memory
allocation when the set of classes are loaded. The class files
are stored in a single package for efficient storage, transfer
and processing as a unit.

In an embodiment of the invention, a pre-processor exam-
ines each class file in a set of class files to locate duplicate
information in the form of redundant constants contained in
a constant pool. The duplicate constant is placed in a
separate shared table, and all occurrences of the constant are
removed from the respective constant pools of the individual
class files. During pre-processing, memory allocation
requirements are determined for each class file, and used to
determine a total allocation requirement for the set of class
files. The shared table, the memory allocation requirements
and the reduced class files are packaged as a unit in a
multi-class file.

When a virtual machine wishes to load the classes in the
multi-class file, the location of the multi-class file is deter-
mined and the multi-class file is downloaded from a server,
if needed. The memory allocation information in the multi-
class file is used by the virtual machine to allocate memory
from the virtual machine’s heap for the set of classes. The
individual classes, with respective reduced constant pools,
are loaded, along with the shared table, into the virtual
machine. Constant resolution is carried out on demand on
the respective reduced constant pools and the shared table.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an embodiment of a Java network application
environment.

FIG. 2 is a block diagram of an embodiment of a computer
system capable of providing a suitable execution environ-
ment for an embodiment of the invention.

FIG. 3 is a block diagram of an embodiment of a class file
format.

FIG. 4 is a flow diagram of a class file pre-processing
method in accordance with an embodiment of the invention.

FIG. 5 is a block diagram of an multi-class file format in
accordance with an embodiment of the invention.

FIG. 6 is a block diagram of the runtime data areas of a
virtual machine in accordance with an embodiment of the
invention.

DETAILED DESCRIPTION OF THE
INVENTION

The invention is a method and apparatus for pre-
processing and packaging class files. In the following
description, numerous specific details are set forth to pro-
vide a more thorough description of embodiments of the
invention. It will be apparent, however, to one skilled in the
art, that the invention may be practiced without these
specific details. In other instances, well known features have
not been described in detail so as not to obscure the
invention.

Embodiment of Computer Execution Environment
(Hardware)

An embodiment of the invention can be implemented as
computer software in the form of computer readable pro-
gram code executed on a general purpose computer such as
computer 200 illustrated in FIG. 2, or in the form of
bytecode class files executable by a virtual machine running
on such a computer. A keyboard 210 and mouse 211 are
coupled to a bi-directional system bus 218. The keyboard

10

15

20

25

30

35

40

45

50

55

60

65

6

and mouse are for introducing user input to the computer
system and communicating that user input to central pro-
cessing unit (CPU) 213. Other suitable input devices may be
used in addition to, or in place of, the mouse 211 and
keyboard 210. I/O (input/output) unit 219 coupled to
bi-directional system bus 218 represents such I/O elements
as a printer, A/V (audio/video) I/O, etc.

Computer 200 includes a video memory 214, main
memory 215 and mass storage 212, all coupled to bidirec-
tional system bus 218 along with keyboard 210, mouse 211
and CPU 213. The mass storage 212 may include both fixed
and removable media, such as magnetic, optical or magnetic
optical storage systems or any other available mass storage
technology. Bus 218 may contain, for example, thirty-two
address lines for addressing video memory 214 or main
memory 215. The system bus 218 also includes, for
example, a 32-bit data bus for transferring data between and
among the components, such as CPU 213, main memory
215, video memory 214 and mass storage 212. Alternatively,
multiplex data/address lines may be used instead of separate
data and address lines.

In one embodiment of the invention, the CPU 213 is a
microprocessor manufactured by Motorola®, such as the
680X0 processor or a microprocessor manufactured by
Intel®, such as the 80X86, or Pentium® processor, or a
SPARC® microprocessor from Sun Microsystems®.
However, any other suitable microprocessor or microcom-
puter may be utilized. Main memory 215 is comprised of
dynamic random access memory (DRAM). Video memory
214 is a dual-ported video random access memory. One port
of the video memory 214 is coupled to video amplifier 216.
The video amplifier 216 is used to drive the cathode ray tube
(CRT) raster monitor 217. Video amplifier 216 is well
known in the art and may be implemented by any suitable
apparatus. This circuitry converts pixel data stored in video
memory 214 to a raster signal suitable for use by monitor
217. Monitor 217 is a type of monitor suitable for displaying
graphic images.

Computer 200 may also include a communication inter-
face 220 coupled to bus 218. Communication interface 220
provides a two-way data communication coupling via a
network link 221 to a local network 222. For example, if
communication interface 220 is an integrated services digital
network (ISDN) card or a modem, communication interface
220 provides a data communication connection to the cor-
responding type of telephone line, which comprises part of
network link 221. If communication interface 220 is a local
area network (LAN) card, communication interface 220
provides a data communication connection via network link
221 to a compatible LAN. Wireless links are also possible.
In any such implementation, communication interface 220
sends and receives electrical, electromagnetic or optical
signals which carry digital data streams representing various
types of information.

Network link 221 typically provides data communication
through one or more networks to other data devices. For
example, network link 221 may provide a connection
through local network 222 to host computer 223 or to data
equipment operated by an Internet Service Provider (ISP)
224. ISP 224 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 225. Local
network 222 and Internet 225 both use electrical, electro-
magnetic or optical signals which carry digital data streams.
The signals through the various networks and the signals on
network link 221 and through communication interface 220,
which carry the digital data to and from computer 200, are
exemplary forms of carrier waves transporting the informa-
tion.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page57 of 161

5,966,702

7

Computer 200 can send messages and receive data,
including program code, through the network(s), network
link 221, and communication interface 220. In the Internet
example, server 226 might transmit a requested code for an
application program through Internet 225, ISP 224, local
network 222 and communication interface 220. In accord
with the invention, one such downloaded application is the
apparatus for pre-processing and packaging class files
described herein.

The received code may be executed by CPU 213 as it is
received, and/or stored in mass storage 212, or other non-
volatile storage for later execution. In this manner, computer
200 may obtain application code in the form of a carrier
wave.

The computer systems described above are for purposes
of example only. An embodiment of the invention may be
implemented in any type of computer system or program-
ming or processing environment.

Class File Structure

Embodiments of the invention can be better understood
with reference to aspects of the class file format. Description
is provided below of the Java class file format. Also,
enclosed as Section A of this specification are Chapter 4,
“The class File Format,” and Chapter 5, “Constant Pool
Resolution,” of The Java Virtual Machine Specification, by
Tim Lindholm and Frank Yellin, published by Addison-
Wesley in September 1996, ©Sun Microsystems, Inc.

The Java class file consists of a stream of 8-bit bytes, with
16-bit, 32-bit and 64-bit structures constructed from con-
secutive 8-bit bytes. A single class or interface file structure
is contained in the class file. This class file structure appears
as follows:

ClassFile {
u4 magic;
u2 minor_ version;
u2 major__version;
u2 constant__pool__count;
cp_info constant_pool[constant__pool__count-1];
u2 access__flags;
u?2 this_ class;
u2 super__class;
u?2 interfaces_ count;
u2 interfaces[interfaces count];
u?2 fields_ count;
field__info fields[fields_ count];
u2 methods__count;
method__info methods[methods__count];
u?2 attributes__count;
attribute__info attributes[attributes__count];

where u2 and u4 refer to unsigned two-byte and four-byte
quantities. This structure is graphically illustrated in FIG. 3.

In FIG. 3, class file 300 comprises four-byte magic value
301, two-byte minor version number 302, two-byte major
version number 303 ;| two-byte constant pool count value
304, constant pool table 305 corresponding to the constant
pool array of variable length elements, two-byte access flags
value 306, two-byte “this class” identifier 307, two-byte
super class identifier 308, two-byte interfaces count value
309, interfaces table 310 corresponding to the interfaces
array of two-byte elements, two-byte fields count value 311,
fields table 312 corresponding to the fields array of variable
length elements, two-byte methods count value 313, meth-
ods table 314 corresponding to the methods array of variable
length elements, two-byte attributes count value 315, and
attributes table 316 corresponding to the attributes array of

10

15

20

25

30

35

40

45

50

55

60

65

8

variable-length elements. Each of the above structures is
briefly described below.

Magic value 301 contains a number identifying the class
file format. For the Java class file format, the magic number
has the value OxXCAFEBABE. The minor version number
302 and major version number 303 specify the minor and
major version numbers of the compiler responsible for
producing the class file.

The constant pool count value 304 identifies the number
of entries in constant pool table 305. Constant pool table 305
is a table of variable-length data structures representing
various string constants, numerical constants, class names,
field names, and other constants that are referred to within
the ClassFile structure. Each entry in the constant pool table
has the following general structure:

cp_info {
ul tag;
ul info[J;

where the one-byte “tag” specifies a particular constant type.
The format of the info[] array differs based on the constant
type. The info[] array may be a numerical value such as for
integer and float constants, a string value for a string
constant, or an index to another entry of a different constant
type in the constant pool table. Further details on the
constant pool table structure and constant types are available
in Chapter 4 of Section A.

Access flags value 306 is a mask of modifiers used with
class and interface declarations. The “this class” value 307
is an index into constant pool table 305 to a constant type
structure representing the class or interface defined by this
class file. The super class value 308 is either zero, indicating
the class is a subclass of java.lang.Object, or an index into
the constant pool table to a constant type structure repre-
senting the superclass of the class defined by this class file.

Interfaces count value 309 identifies the number of direct
superinterfaces of this class or interface, and accordingly,
the number of elements in interfaces table 310. Interfaces
table 310 contains two-byte indices into constant pool table
305. Each corresponding entry in constant pool table 305 is
a constant type structure representing an interface which is
a direct superinterface of the class or interface defined by
this class file.

The fields count value 311 provides the number of struc-
tures in fields table 312. Each entry in fields table 312 is a
variable-length structure providing a description of a field in
the class type. Fields table 312 includes only those fields that
are declared by the class or interface defined by this class
file.

The methods count value 313 indicates the number of
structures in methods table 314. Each element of methods
table 314 is a variable-length structure giving a description
of, and virtual machine code for, a method in the class or
interface.

The attributes count value 315 indicates the number of
structures in attributes table 316. Each element in attributes
table 316 is a variable-length attribute structure. Attribute
structures are discussed in section 4.7 of Section A.

Embodiments of the invention examine the constant pool
table for each class in a set of classes to determine where
duplicate information exists. For example, where two or
more classes use the same string constant, the string constant
may be removed from each class file structure and placed in
a shared constant pool table. In the simple case, if N classes
have the same constant entry, N units of memory space are

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page58 of 161

5,966,702

9

taken up in storage resources. By removing all constant
entries and providing one shared entry, N-1 units of memory
space are freed. The memory savings increase with N. Also,
by implementing a shared constant table, entries in the
constant table need be fully resolved at most once. After the
initial resolution, future code references to the constant may
directly use the constant.

Pre-processing and Packaging Classes

An embodiment of the invention uses a class pre-
processor to package classes in a format called an “mclass™
or multi-class file. A method for pre-processing and pack-
aging a set of class files is illustrated in the flow diagram of
FIG. 4.

The method begins in step 400 with a set of arbitrary class
files “S” (typically part of one application). In step 401, the
pre-processor reads and parses each class in “S.” In step 402,
the pre-processor examines the constant pool tables of each
class to determine the set of class file constants (such as
strings and numerics, as well as others specific to the class
file format) that can be shared between classes in “S.” A
shared constant pool table is created in step 403, with all
duplicate constants determined from step 402. In step 404,
the pre-processor removes the duplicate, shared constants
from the individual constant pool tables of each class.

In step 405, the pre-processor computes the in-core
memory requirements of each class in “S,” as would nor-
mally be determined by the class loader for the given virtual
machine. This is the amount of memory the virtual machine
would allocate for each class, if it were to load each class
separately. After considering all classes in “S” and the
additional memory requirement for the shared constant pool
table, the total memory requirement for loading “S” is
computed in step 406.

In step 407, the pre-processor produces a multi-class
(mclass) file that contains the shared constant pool table
created in step 403, information about memory allocation
requirements determined in steps 405 and 406, and all
classes in “S,” with their respective reduced constant pool
tables. The mclass file for the class set “S” is output in step
408. In some embodiments, to further reduce the size of the
multi-class file, the multi-class file may be compressed.

An example of one embodiment of a multi-class file
structure may be represented as follows:

MclassFile {
u2 shared__pool__count;
cp_info shared_pool[shared__pool__count-1];
u2 mem__alloc__req;
u2 classfile__count;
ClassFile classfiles[classfile_count];

In one embodiment of the invention, a new constant type
is defined with a corresponding constant type tag. The new
constant type provides as its info[] element an index into the
shared constant table. During pre-processing, duplicated
constant elements are placed in the shared constant pool as
a shared element, and an element of the new constant type
replaces the duplicated element in the reduced pool to direct
constant resolution to the shared element in the shared
constant pool. Reduction occurs because the replacement
element is just a pointer to the actual constant placed in the
shared constant pool.

FIG. § is a simplified block diagram of an embodiment of
the multi-class file format. Mclass file 500 comprises shared

10

15

20

25

35

40

45

50

55

60

65

10

constant pool table 501, memory allocation requirements
502 and the set of individual classes 503. The set of
individual classes 503 comprises the class file structures for
classes 1-N (N being the number of classes in the set), along
with the corresponding reduced constant pool tables 1-N.
The size of the shared constant pool table 501 is dependent
on the number of duplicate constants found in the set of
classes. The memory allocation requirements 502 may be
represented as a single value indicating the total memory
needed to load all class structures (classes 1-N) in individual
classes 503, as well as the shared constant pool table 501.
The shared pool count and classfile count (not shown in FIG.
5) identify the number of elements in the shared constant
pool table 501 and the classfiles array of ClassFile structures
(represented by classes 503), respectively.

The multi-class file is typically considerably smaller than
the sum of the sizes of the individual class files that it was
derived from. It can be loaded by the virtual machine during
or prior to the execution of an application, instead of having
to load each contained class on demand. The virtual machine
is also able to take advantage of the allocation requirements
information to pre-allocate all required memory for the
multi-class set. This solves many of the problems associated
with class loading.

Classes in a multi-class set share information between
classes, and therefore are smaller. This provides the follow-
ing advantages:

a) the classes take up less space on servers or storage

devices;

b) the classes take less network or file transfer time to

read;

¢) the classes take up less memory when loaded; and

d) execution is faster, since shared constants are resolved

at most once.

Multi-class sets consolidate the loading of required
classes instead of loading the classes one by one. Using
allocation information, only one dynamic memory alloca-
tion is needed instead of multiple allocation operations. This
results in less fragmentation, less time spent in the allocator,
and less waste of memory space.

Because the class files are consolidated in a single multi-
class file, only a single transaction is needed to perform a
network or file system search, to set up a transfer session
(e.g., HTTP) and to transfer the entire set of classes. This
minimizes pauses in the execution that can result from such
transactions and provides for deterministic execution, with
no pauses for class loading during a program run. Also, once
the multi-class file is loaded and parsed, there is no need for
the computer executing the program to remain connected to
the source of the classes.

FIG. 6 illustrates the runtime data areas of the virtual
machine when a multi-class file is processed and loaded in
accordance with an embodiment of the invention. In FIG. 6,
runtime data areas 600 comprise multiple program counter
registers (PC REG 1-M) and multiple stacks 1-M. One
program counter register and one stack are allocated to each
thread executing in the virtual machine. Each program
counter register contains the address of the virtual machine
instruction for the current method being executed by the
respective thread. The stacks are used by the respective
threads to store local variables, partial results and an operand
stack.

Runtime data areas 600 further comprise heap 601, which
contains method area 602. Heap 601 is the runtime data area
from which memory for all class instances and arrays is
allocated. Method area 602 is shared among all threads, and

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page59 of 161

5,966,702

11

stores class structures such as the constant pool, field and
method data, and the code for methods. Within method area
602, memory block 603, which may or may not be
contiguous, is allocated to the multi-class set of classes “S.”
Other regions in heap 601 may be allocated to “S” as well.
Reduced constant pools 1-N, along with shared constant
pool 604, reside within block 603.

Due to the removal of redundant constants in accordance
with an embodiment of the invention, the size of block 603
required to contain reduced constant pools 1-N and shared
constant pool 604 is much smaller than would be required to
accommodate constant pools 1-N, were they not reduced.
Also, the allocations in block 603 are much less fragmented
(and may be found in contiguous memory) than the memory
that would be allocated were the classes to be loaded one by
one.

Thus, a method and apparatus for pre-processing and
packaging class files has been described in conjunction with
one or more specific embodiments. The invention is defined
by the claims and their full scope of equivalents.

CHAPTER 4

The Class File Format

This chapter describes the Java Virtual Machine class file
format. Each class file contains one Java type, either a class
or an interface. Compliant Java Virtual Machine implemen-
tations must be capable of dealing with all class files that
conform to the specification provided by this book.

A class file consists of a stream of 8-bit bytes. All 16-bit,
32-bit, and 64-bit quantities are constructed by reading in
two, four, and eight consecutive 8-bit bytes, respectively.
Multibyte data items are always stored in big-endian order,
where the high bytes come first. In Java, this format is
supported by inter-faces java.io.Datalnput and java.io-
.DataOutput and classes such as java.io.DatalnputStream
and java.io.DataOutputStream.

This chapter defines its own set of data types representing
Java class file data: The types ul, u2, and u4 represent an
unsigned one-, two-, or four-byte quantity, respectively. In
Java, these types may be read by methods such as
readUnsignedByte, readUnsignedShort, and readint of the
interface java.io.Datalnput.

The Java class file format is presented using pseudostruc-
tures written in a C-like structure notation. To avoid confu-
sion with the fields of Java Virtual Machine classes and class
instances, the contents of the structures describing the Java
class file format are referred to as items. Unlike the fields of
a C structure, successive items are stored in the Java class
file sequentially, without padding or alignment.

Variable-sized tables, consisting of variable-sized items,
are used in several class file structures. Although we will use
C-like array syntax to refer to table items, the fact that tables
are streams of varying-sized structures means that it is not
possible to directly translate a table index into a byte offset
into the table.

Where we refer to a data structure as an array, it is literally
an array.
4.1 ClassFile

A class file contains a single ClassFile structure:

ClassFile {
u4 magic;
u2 minor__version;

10

15

20

25

30

35

40

45

50

60

65

12

-continued

u2 major__version;

u2 constant__pool__count;

cp_info constant_pool[constant__pool__count-1];
u2 access__flags;

u2 this_ class;

u2 super__class;

u2 interfaces__count;

u2 interfaces|interfaces__count]

u? fields__count;

field__info fields[fields__count]

u2 methods__count;

method__info methods[methods_ count];
u? attributes__count;

attribute__info attributes [attributes__count];

The items in the ClassFile structure are as follows:
magic

The magic item supplies the magic number identifying the
class file format; it has the value 0OxCAFEBABE.
minor_version, major__version

The values of the minor version and major_ version
items are the minor and major version numbers of the
compiler that produced this class file. An implementation of
the Java Virtual Machine normally supports class files
having a given major version number and minor version
numbers 0 through some particular minor_ version.

If an implementation of the Java Virtual Machine supports
some range of minor version numbers and a class file of the
same major version but a higher minor version is
encountered, the Java Virtual Machine must not attempt to
run the newer code. However, unless the major version
number differs, it will be feasible to implement a new Java
Virtual Machine that can run code of minor versions up to
and including that of the newer code.

AJava Virtual Machine must not attempt to run code with
a different major version. A change of the major version
number indicates a major incompatible change, one that
requires a fundamentally different Java Virtual Machine.

In Sun’s Java Developer’s Kit (JDK) 1.0.2 release, docu-
mented by this book, the value of major_ version is 45. The
value of minor version is 3. Only Sun may define the
meaning of new class file version numbers.
constant__pool _count

The value of the constantsool _count item must be greater
than zero. It gives the number of entries in the constant
pool table of the class file, where the constant pool entry at
index zero is included in the count but is not present in the
constant__pool table of the class file. A constant pool index
is considered valid if it is greater than zero and less than
constant__pool _count.
constant__pool[]

The constant__pool is a table of variable-length structures
(84.4) representing various string constants, class names,
field names, and other constants that are referred to within
the ClassFile structure and its substructures.

The first entry of the constant pool table, constant _pool
[0], is reserved for internal use by a Java Virtual Machine
implementation. That entry is not present in the class file.
The first entry in the class file is constant__pool [1].

Each of the constant pool table entries at indices 1
through constant__pool count_ 1 is a variable-length struc-
ture (§4.4) whose format is indicated by its first “tag” byte.
access_ flags

The value of the access_ flags item is a mask of modifiers
used with class and interface declarations. The access_ flags
modifiers are shown in Table 4.1.

Case4:10-cv-03561-LB Documentl Filed08/12/10

Page60 of 161

5,966,702
Flag Name Value Meaning Used By
ACC_PUBLIC 0x0001 Is public; may be accessed from outside its package. Class, interface
ACC_FINAL 0x0010 Is final; no subclasses allowed. Class
ACC_SUPER 0x0020 Treat superclass methods specially in invokespecial. Class, interface

Is an interface.
Is abstract; may not be instantiated.

ACC_INTERFACE 0x0200
ACC_ABSTRACT 0x0400

Interface
Class, interface

An interface is distinguished by its ACC_INTERFACE
flag being set. If ACC__INTERFACE is not set, this class file
defines a class, not an interface.

Interfaces may only use flags indicated in Table 4.1 as
used by interfaces. Classes may only use flags indicated in
Table 4.1 as used by classes. An interface is implicitly
abstract (§2.13.1); its ACC__ ABSTRACT flag must be set.
An interface cannot be final; its implementation could never
be completed (§2.13.1) if it were, so it could not have its
ACC_FINAL flag set.

The flags ACC_FINAL and ACC__ ABSTRACT cannot
both be set for a class; the implementation of such a class
could never be completed (§2.8.2).

The setting of the ACC_SUPER flag directs the Java
Virtual Machine which of two alternative semantics for its
invokespecial instruction to express; it exists for backward
compatibility for code compiled by Sun’s older Java com-
pilers. All new implementations of the Java Virtual Machine
should implement the semantics for invokespecial docu-
mented in Chapter 6, “Java Virtual Machine Instruction
Set” All new compilers to the Java Virtual Machine’s
instruction set should set the ACC__SUPER flag. Sun’s older
Java compilers generate ClassFile flags with ACC__ SUPER
unset. Sun’s older Java Virtual Machine implementations
ignore the flag if it is set.

All unused bits of the access_ flags item, including those
not assigned in Table 4.1, are reserved for future use. They
should be set to zero in generated class files and should be
ignored by Java Virtual Machine implementations.
this_ class

The value of the this class item must be a valid index
into the constant_pool table. The constant pool entry at
that index must be a CONSTANT Class_info (§4.4.1)
structure representing the class or interface defined by this
class file.
super__class

For a class, the value of the super_ class item either must
be zero or must be a valid index into the constant pool
table. If the value of the super_ class item is nonzero, the
constant__pool entry at that index must be a CONSTANT
Class__info (§4.4.1) structure representing the superclass of
the class defined by this class file. Neither the superclass nor
any of its superclasses may be a final class.

If the value of super_ class is zero, then this class file must
represent the class java.lang.Object, the only class or inter-
face without a superclass.

For an interface, the value of super class must always be
a valid index into the constant_pool table. The constant__
pool entry at that index must be a CONSTANT _ Class__info
structure representing the class java.lang.Object.
interfaces__count

The value of the interfaces count item gives the number
of direct superinterfaces of this class or interface type.
interfaces|]

Each value in the interfaces array must be a valid index
into the constant_pool table. The constant pool entry at
each value of interfaces [i], where 0 £ 1 < interfaces_ count,
must be a CONSTANT__Class__info (§4.4.1) structure rep-

10

20

25

30

35

40

45

50

55

60

65

resenting an interface which is a direct superinterface of this
class or interface type, in the left-to-right order given in the
source for the type.

fields__count

The value of the fields count item gives the number of
field_info structures in the fields table. The field_info
(84.5) structures represent all fields, both class variables and
instance variables, declared by this class or interface type.
fields[]

Each value in the fields table must be a variable-length
field info(§4.5) structure giving a complete description of
a field in the class or interface type. The fields table includes
only those fields that are declared by this class or interface.
It does not include items representing fields that are inher-
ited from superclasses or superinterfaces.
methods__count

The value of the methods__count item gives the number of
method__info structures in the methods table.
methods[]

Each value in the methods table must be a variable-length
method_info (§4.6) structure giving a complete description
of and Java Virtual Machine code for a method in the class
or interface.

The method _info structures represent all methods, both
instance methods and, for classes, class (static) methods,
declared by this class or interface type. The methods table
only includes those methods that are explicitly declared by
this class. Interfaces have only the single method <clinit>,
the interface initialization method (§3.8). The methods table
does not include items representing methods that are inher-
ited from superclasses or superinterfaces.
attributes__count

The value of the attributes_ count item gives the number
of attributes (§4.7) in the attributes table of this class.
attributes]]

Each value of the attributes table must be a variable-
length attribute structure. A ClassFile structure can have any
number of attributes (§4.7) associated with it.

The only attribute defined by this specification for the
attributes table of a ClassFile structure is the SourceFile
attribute (§4.7.2).

A Java Virtual Machine implementation is required to
silently ignore any or all attributes in the attributes table of
a ClassFile structure that it does not recognize. Attributes not
defined in this specification are not allowed to affect the
semantics of the class file, but only to provide additional
descriptive information (§4.7.1).

4.2 Internal Form of Fully Qualified Class Names

Class names that appear in class file structures are always
represented in a fully qualified form (§2.7.9). These class
names are always represented as CONSTANT __Utf8_ info
(84.4.7) structures, and they are referenced from those
CONSTANT_ NameAndType__info (§4.4.6) structures that
have class names as part of their descriptor (§4.3, as well as
from all CONSTANT__Class__info (§4.4.1) structures.

For historical reasons the exact syntax of fully qualified
class names that appear in class file structures differs from
the familiar Java fully qualified class name documented in

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page61 of 161

5,966,702

15

§2.7.9. In the internal form, the ASCII periods (‘.) that
normally separate the identifiers (§2.2) that make up the
fully qualified name are replaced by ASCII forward slashes
(¢/°). For example, the normal fully qualified name of class
Thread is java.lang.Thread. In the form used in descriptors
in class files, a reference to the name of class Thread is
implemented using a CONSTANT_ Utf8 info structure
representing the string “java/lang/Thread”.
4.3 Descriptors

A descriptor is a string representing the type of a field or
method.
4.3.1 Grammar Notation

Descriptors are specified using a grammar. This grammar
is a set of productions that describe how sequences of
characters can form syntactically correct descriptors of
various types. Terminal symbols of the grammar are shown
in bold fixed-width font. Nonterminal symbols are shown in
italic type. The definition of a nonterminal is introduced by
the name of the nonterminal being defined, followed by a
colon. One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. A nonterminal
symbol on the right-hand side of a production that is
followed by an asterisk (*) represents zero or more possibly
different values produced from that nonterrinal, appended
without any intervening space.
4.3.2 Field Descriptors

Afield descriptor represents the type of a class or instance
variable. It is a series of characters generated by the gram-
mar:

FieldDescriptor:
FieldType
ComponentType:
FieldType
FieldType:
BaseType
ObjectType
ArrayType
BaseType:

Nnu—=—mgnx

ObjectType:
L<classname>;
ArrayType:
[ComponentType
The characters of BaseType, the L and; of ObjectType,
and the [of ArrayType are all ASCII characters. The
<classname> represents a fully qualified class name, for
instance, java.lang. Thread. For historical reasons it is stored
in a class file in a modified internal form (§4.2).
The meaning of the field types is as follows:

B byte signed byte

C char character

D double double-precision IEEE 754 float
F float single-precision IEEE 754 float
I int integer

J long long integer

L<classname>; .. an instance of the class

S short signed short

10

15

20

25

30

35

40

45

50

55

60

65

16

-continued

true or false
one array dimension

Z boolean

—_—

For example, the descriptor of an int instance variable is
simply I. The descriptor of an instance variable of type
Object is Ljava/lang/Object;. Note that the internal form of
the fully qualified class name for class Object is used. The
descriptor of an instance variable that is a multidimensional
double array,

double d[T[1[
is
[[D
4.3.3 Method Descriptors
A parameter descriptor represents a parameter passed to a
method:

ParameterDescriptor:
FieldType
A method descriptor represents the parameters that the
method takes and the value that it returns:

MethodDescriptor:
(ParameterDescriptor*)ReturnDescriptor
A return descriptor represents the return value from a
method. It is a series of characters generated by the gram-
mar:

ReturnDescriptor:
FieldType
v

The character V indicates that the method returns no value
(its return type is void). Otherwise, the descriptor indicates
the type of the return value.

A valid Java method descriptor must represent 255 or
fewer words of method parameters, where that limit includes
the word for this in the case of instance method invocations.
The limit is on the number of words of method parameters
and not on the number of parameters themselves; parameters
of type long and double each use two words.

For example, the method descriptor for the method

Object mymethod(int i, double d, Thread t)
is

(IDLjava/lang/Thread;)Ljava/lang/Object;

Note that internal forms of the fully qualified class names of
Thread and Object are used in the method descriptor.

The method descriptor for mymethod is the same whether
mymethod is static or is an instance method. Although an
instance method is passed this, a reference to the current
class instance, in addition to its intended parameters, that
fact is not reflected in the method descriptor. (A reference to
this is not passed to a static method.) The reference to this
is passed implicitly by the method invocation instructions of
the Java Virtual Machine used to invoke instance methods.
4.4 Constant Pool

All constant_pool table entries have the following gen-
eral format:

cp_info {
ul tag;
ul info [|

Each item in the constant pool table must begin with a
1-byte tag indicating the kind of cp__info entry. The contents
of the info array varies with the value of tag. The valid tags
and their values are listed in Table 4.2

Case4:10-cv-03561-LB

Documentl Filed08/12/10 Page62 of 161

5,966,702
17 18
-continued

Constant Type Value CONSTANT_Methodref__info {

ul tag;
CONSTANT__Class 7 u2 class__index;
CONSTANT__Fieldref 9 5 u2 name__and__type__index;
CONSTANT _Methodref 10
CONSTANT__InterfaceMethodref 11 CONSTANT_ InterfaceMethodref_info {
CONSTANT_String 8 ul tag;
CONSTANT_ Integer 3 u2 class_ index;
CONSTANT__Float 4 u2 name__and__type__index;
CONSTANT_ Long 5 10 1
CONSTANT__Double 6
CONSTANT__NameAndType 12
CONSTANT_Utf8 1 The items of these structures are as follows:

Each tag byte must be followed by two or more bytes
giving information about the specific constant. The format of
the additional information varies with the tag value.

4.4.1 CONSTANT_ Class

The CONSTANT _Class__info structure is used to repre-

sent a class or an interface:

CONSTANT__Class__info {
ul tag;
u2 name__index;

The items of the CONSTANT __Class__info structure are
the following:
tag

The tag item has the value CONSTANT__Class (7).
name_index

The value of the name__index item must be a valid index
into the constant_pool table. The constant pool entry at
that index must be a CONSTANT_Utf8_info (§4.4.7)
structure representing a valid fully qualified Java class name
(§2.8.1) that has been converted to the class file’s internal
form (§4.2).

Because arrays are objects, the opcodes anewarray and
multianewarray can reference array “classes” via
CONSTANT__Class__info (§4.4.1) structures in the
constant__pool table. In this case, the name of the class is the
descriptor of the array type. For example, the class name
representing a two-dimensional int array type;

inf[][]
is
[
The class name representing the type array of class Thread;
Thread[]
is
[Ljava.lang.Thread;
A valid Java array type descriptor must have 255 or fewer
array dimensions.
4.4.2 CONSTANT _Fieldref, CONSTANT__Methodref, and
CONSTANT InterfaceMethodref

Fields, methods, and interface methods are represented by
similar structures:

CONSTANT__Fieldref_info {
ul tag;
u2 class__index;
u2 name__and__type__index;

}

15

20

25

30

35

40

45

50

55

60

65

tag

The tag item of a CONSTANT _ Fieldref info structure
has the value CONSTANT__Fieldref (9).

The tag item of a CONSTANT _Methodref info struc-
ture has the value CONSTANT_ Methodref (10).

The tag item of a CONSTANT _ InterfaceMethodref
info structure has the value CONSTANT__
InterfaceMethodref (11).
class index

The value of the class index item must be a valid index
into the constant_pool table. The constant pool entry at
that index must be a CONSTANT Class info (§4.4.1)
structure representing the class or interface type that con-
tains the declaration of the field or method.

The class_index item of a CONSTANT _ Fieldref info
or a CONSTANT_Methodref info structure must be a
class type, not an interface type. The class_index item of a
CONSTANT __InterfaceMethodref info structure must be
an interface type that declares the given method.
name_ and_ type_ index

The value of the name and_type index item must be a
valid index into the constant__pool table. The constant pool
entry at that index must be a CONSTANT__
NameAndType__info (§4.4.6) structure. This constant__pool
entry indicates the name and descriptor of the field or
method.

If the name of the method of a CONSTANT__
Methodref info or CONSTANT InterfaceMethodref
info begins with a ‘<’ (‘u003c’), then the name must be one
of the special internal methods (§3,8), either <init> or
<clinit>. In this case, the method must return no value.
4.43 CONSTANT_ String

The CONSTANT _String info structure is used to rep-
resent constant objects of the type java.lang.String:

CONSTANT__String_info {
ul tag;
u2 string _index;

The items of the CONSTANT _String_info structure are
as follows:
tag

The tag item of the CONSTANT _String info structure
has the value CONSTANT_ String (8).
string__index

The value of the string__index item must be a valid index
into the constant_pool table. The constant pool entry at
that index must be a CONSTANT Utf8 info (§4.4.3)
structure representing the sequence of characters to which
the java.lang.String object is to be initialized.
4.4.4 CONSTANT _Integer and CONSTANT _ Float

The CONSTANT Integer_info and CONSTANT _
Float_info structures represent four-byte numeric (int and
float) constants:

Case4:10-cv-03561-LB

Documentl Filed08/12/10 Page63 of 161

5,966,702
19 20
The items of these structures are as follows:
tag
CONslTAN_TJntegeLinfo { The tag item of the CONSTANT ILong info structure
34 Laﬁés; has the value CONSTANT__Long (5).
5 The tag item of the CONSTANT__Double__info structure
CONSTANT_ Float_info { has the value CONSTANT_ Double (6).
31 Lagt;es_ high_ bytes, low__bytes
) vies: The unsigned high bytes and low bytes items of the
CONSTANT _ILong structure together contain the value of
. 10 the long constant ((long)high_bytes<<32)+low-bytes,

The items of these structures are as follows: where the bytes of each of high bytes and low_ bytes are
tag . . stored in big-endian (high byte first) order.

The tag item of the CONSTANT _Integer info structure The high bytes and low_bytes items of the
ha%;he Val‘%e COI;IS}TAEIEEISI%Z%I%(S%.I o CONSTANT_Double_ info structure contain the double
has tt?etfzihiteerggNéj? ANT._ Float (4)* oat_info structure o o.1ve in IEEE 754 ﬂoating-point “d.oubl.e forrgat” bi.t layout.
bytes - ' The bytes of each.ltem are stored in blg-endl.an (high byte

The bytes item of the CONSTANT _Integer_info struc- first) order: The high_ bytes and low_ bytes items are first
ture contains the value of the int constant. The bytes of the converted into 2 10“% argument. Then:
value are stored in big-endian (high byte first) order. If the argument is 0x7f80000000000000L, the double

The bytes item of the CONSTANT _Float__info structure 20 value will be positive infinity.
contains the value of the float constant in IEEE 754 floating- If the argument is Oxff80000000000000L, the double
point “single format” bit layout. The bytes of the value are value will be negative infinity.
stored in big-endian (high byte first) order, and are first If the argument is in the range Ox7ff0000000000001L
converted into an int argument. Then: through Ox7ffEXFFEIL or in the range

If the argument is 0x7f800000, the float value will be 25 0xfff0000000000001L through Ox{EETFREIT, the

positive infinity. double value will be NaN.

If the argument is 0xff800000, the float value will be In all other cases, let s, ¢, and m be three values that might

negative infinity. be computed from the argument:

If the argument is in the range 0x7f800001 through 20 int s=((bits >> 63) == 0) 7 1 : -1;

Ox71tfHftf or in the range 0xff800001 through Oxftffftff, int e=(int)((bits >> 52) & 0x7{fL);
the float value will be NaN. long m=(e == 0) ?
In all other cases, let s, e, and m be three values that might (bits & O << 1 :
be computed by (bits & OxfHFFFFL) | 0x10000000000000L;
int s=((bytes >> 31) ==0)? 1 : -1; 35 Then the floating-point value equals the double value of the
int e=((bytes >> 23) & 0xff); mathematical expression
int m=(e == 0) ? s-m-2 1075
(bytes & Ox7fffff) << 1 :
(bytes & Ox7{IfLf) | 0x800000; 4.4.6 CONSTANT_ NameAndType
Then the float value equals the result of the mathematical ,;, The CONSTANT NameAndType info structure is used
expression to represent a field or method, without indicating which class
P or interface type it belongs to:
4.4.5 CONSTANT_Long and CONSTANT__Double

The CONSTANT_Long info and CONSTANT _ 45 CONSTAN_TfNameAndTYPeJHfO {
Double_info represent eight-byte numeric (long and Eé i%;le idex:
double) constants: w descri;tor,irldex;

¥
CONSTANT__Long_info {
ul tag; 50 The items of the CONSTANT_NameAndType_ info
u4 high _bytes; structure are as follows:
u4 low__bytes; tag
CONSTANT_Double_info { The tag item of the CONSTANT__NameAndType_ info
ul tag; structure has the value CONSTANT _NameAndType (12).
ud high bytes; 55 name__index
} u4 low_bytes; The value of the name index item must be a valid index
into the constant_pool table. The constant pool entry at
) o that index must be a CONSTANT_Utf8_info (§4.4.7)

All eight-byte constants take up two entries in the structure representing a valid Java field name or method
ool ol b S e) 5 101 0 pame (52 v s s (o Tl i)
when a class file is read. If a CONSTANT _Long_info or giigig;;hi;?éxas @ Java identifier.
Soaggiﬁga?aiﬁslzagggx Srfniﬁzgethflzsngi Vl:jlrg ig:lmﬂilrel . The. value of the descriptor_index item must be a valid
the pool?s located at index n+,2 The constant_pool index index into the constant__pool table. The constant__pool entry

) - 65 at that index must be a CONSTANT__Utf 8__info (§4.4.7)

n+1 must be considered invalid and must not be used.!
n retrospect, making eight-byte constants take two constant pool entries was
a poor choice.

structure representing a valid Java field descriptor (§4.3.2)
or method descriptor (§4.3.3).

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page64 of 161

5,966,702

21

4.477 CONSTANT__Utf8

The CONSTANT _Utf8 info structure is used to repre-
sent constant string values.

UTF-8 strings are encoded so that character sequences
that contain only non-null ASCII characters can be repre-
sented using only one byte per character, but characters of up
to 16 bits can be represented. All characters in the range
‘00001’ to ‘u007F’ are represented by a single byte:

0 bits 0-7

The seven bits of data in the byte give the value of the
character represented. The null character (‘u0000%) and
characters in the range ‘u0080°, to “‘u07FF’ are represented
by a pair of bytes x and y:

x: 11 0 bits 6-10 y: 1 0 bits 0-5

The bytes represent the character with the value ((x &
0x1f) << 6)+(y & 0x3f).

Characters in the range ‘u0800° to ‘uFFFF’ are repre-
sented by three bytes X, y, and z:

x: 1110 bits 12-15 y: 1 0 bits 6-11 z: 1 O bits 0-5

The character with the value ((x & Oxf)<<12)+((y &
0x3f)<<6)+(z & 0x3f) is represented by the bytes. The bytes
of multibyte characters are stored in the class file in big-
endian (high byte first) order. There are two differences
between this format and the “standard” UTF-8 format. First,

10

15

20

22

The bytes array contains the bytes of the string. No byte
may have the value (byte)0 or (byte)OxfO—(byte)Oxf.
4.5 Fields

Each field is described by a variable-length field info
structure. The format of this structure is

field_info {
u2 access__flags
u2 name__index;
u2 descriptor__index;
u?2 attributes__count;
attribute__info attributes[attributes__count];

The items of the field info structure are as follows:

access_ flags

The value of the access_ flags item is a mask of modifiers
used to describe access permission to and properties of a
field. The access_flags modifiers are shown in Table 4.3.

Flag Name Value Meaning Used By
ACC_PUBLIC 0x0001 Is public; may be accessed from outside its package. Any field
ACC__PRIVATE 0x0002 Is private; usable only within the defining class. Class field
ACC_PROTECTED 0x0004 Is protected; may be accessed within subclasses. Class field
ACC__STATIC 0x0008 Is static. Any field
ACC_FINAL 0x0010 Is final; no further overriding or assignment after ~ Any field
initialization.
ACC_VOLATILE 0x0040 Is volatile; cannot be cached. Class field
ACC_TRANSIENT 0x0080 Is transient; not written or read by a persistent Class field

object manager.

the null byte (byte)0 is encoded using the two-byte format
rather than the one-byte format, so that Java Virtual Machine
UTF-8 strings never have embedded nulls. Second, only the
one-byte, two-byte, and three-byte formats are used. The
Java Virtual Machine does not recognize the longer UTF-8
formats.

For more information regarding the UTF-8 format, see
File System Safe UCS Transfonnation Formaf(FSS__UTF),
X/Open Preliminary Specification, X/Open Company Ltd.,
Document Number: P316. This information also appears in
ISO/IEC 10646, Annex P.

The CONSTANT__Utf8 _ info structure is

CONSTANT__Utf8__info {
ul tag;
u2 length;
ul bytes[length];

The items of the CONSTANT__Utf8 _ info structure are
the following:
tag

The tag item of the CONSTANT_Utf8_info structure
has the value CONSTANT _Utf8 (1).
length

The value of the length item gives the number of bytes in
the bytes array (not the length of the resulting string). The
strings in the CONSTANT _Utf8 info structure are not
null-terminated.
bytes[]

40

45

50

55

60

65

Fields of interfaces may only use flags indicated in Table
4.3 as used by any field. Fields of classes may use any of the
flags in Table 4.3.

All unused bits of the access_ flags item, including those
not assigned in Table 4.3, are reserved for future use. They
should be set to zero in generated class files and should be
ignored by Java Virtual Machine implementations.

Class fields may have at most one of flags ACC__
PUBLIC, ACC_PROTECTED, and ACC_PRIVATE set
(82.7.8). A class field may not have both ACC_ FINAL and
ACC__VOLATILE set (§2.9.1).

Each interface field is implicitly static and final (§2.13.4)
and must have both its ACC_STATIC and ACC_FINAL
flags set. Each interface field is implicitly public (§2.13.4)
and must have its ACC__ PUBLIC flag set.
name__index

The value of the name index item must be a valid index
into the constant_pool table. The constant pool entry at
that index must be a CONSTANT Utf8 info (§4.4.7)
structure which must represent a valid Java field name (§2.7)
stored as a simple (not fully qualified) name (§2.7.1), that is,
as a Java identifier.
descriptor__index

The value of the descriptor index item must be a valid
index into the constant__pool table. The constant__pool entry
at that index must be a CONSTANT _ Utf8 (§4.4.7) structure
which must represent a valid Java field descriptor (§4.3.2).
attributes__count

The value of the attributes count item indicates the
number of additional attributes (§4.7) of this field.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page65 of 161

5,966,702

23

attributes]]

Each value of the attributes table must be a variable-
length attribute structure. A field can have any number of
attributes (§4.7) associated with it.

The only attribute defined for the attributes table of a
field info structure by this specification is the Con-
stantValue attribute (§4.7.3).

A Java Virtual Machine implementation must recognize
ConstantValue attributes in the attributes table of a field
info structure. A Java Virtual Machine implementation is
required to silently ignore any or all other attributes in the
attributes table that it does not recognize. Attributes not
defined in this specification are not allowed to affect the
semantics of the class file, but only to provide additional
descriptive information (§4.7.1).

4.6 Methods

Each method, and each instance initialization method
<init>, is described by a variable-length method__info struc-
ture. The structure has the following format:

method__info {
u2 access__flags;
u2 name__index;
u2 descriptor__index;
u? attributes__count;
attribute__info attributes [attributes__count];

The items of the method__info structure are as follows:
access_ flags

The value of the access_ flags item is a mask of modifiers
used to describe access permission to and properties of a
method or instance initialization method (3.8). The access
flags modifiers are shown in Table 4.4.

10

15

20

25

30

24

class or instance method may not use ACC__STATIC with
ACC_ABSTRACT (that is, a static method is implicitly
final and thus cannot be overridden, so such a method could
never be implemented or used).

Class and interface initialization methods (§3.8), that is,
methods named <clinit>, are called implicitly by the Java
Virtual Machine; the value of their access flags item is
ignored.

Each interface method is implicitly abstract, and so must
have its ACC__ABSTRACT flag set. Each interface method
is implicitly public (§2.13.5), and so must have its ACC__
PUBLIC flag set.
name_index

The value of the name__index item must be a valid index
into the constant_pool table. The constant pool entry at
that index must be a CONSTANT_Utf8_info (§4.4.7)
structure representing either one of the special internal
method names (§3.8), either <init>or <clinit>, or a valid
Java method name (§2.7), stored as a simple (not fully
qualified) name (§2.7.1).
descriptor__index

The value of the descriptor_index item must be a valid
index into the constant__pool table. The constant__pool entry
at that index must be a CONSTANT__Utf8 info (§4.4.7)
structure representing a valid Java method descriptor
(84.3.3).
attributes__count

The value of the attributes count item indicates the
number of additional attributes (§4.7) of this method.
attributes]]

Each value of the attributes table must be a variable-
length attribute structure. A method can have any number of
optional attributes (§4.7) associated with it.

The only attributes defined by this specification for the
attributes table of a method_info structure are the Code
(84.7.4) and Exceptions (§4.7.5) attributes.

Flag Name Value Meaning Used By
ACC_PUBLIC 0x0001 Is public; may be accessed from outside its Any method
package.
ACC_PRIVATE 0x0002 Is private; usable only within the defining Class/instance method
class.
ACC_PROTECTED 0x0004 Is protected; may be accessed within Class/instance method
subclasses.
ACC__STATIC 0x0008 Is static. Class/instance method
ACC_FINAL 0x0010 Is final; no overriding is allowed. Class/instance method
ACC_SYNCHRONIZED 0x0020 Is synchronized; wrap use in monitor lock. Class/instance method
ACC_NATIVE 0x0100 Is native; implemented in a language other Class/instance method
than Java.
ACC_ABSTRACT 0x0400 Is abstract, no implementation is provided. Any method

Methods in interfaces may only use flags indicated in
Table 4.4 as used by any method. Class and instance
methods (§2.10.3) may use any of the flags in Table 4.4.
Instance initialization methods (§3.8) may only use ACC__
PUBLIC, ACC_PROTECTED, and ACC_ PRIVATE.

All unused bits of the access_ flags item, including those
not assigned in Table 4.4, are reserved for future use. They
should be set to zero in generated class files and should be
ignored by Java Virtual Machine implementations.

At most one of the flags ACC_PUBLIC, ACC__
PROTECTED, and ACC_PRIVATE may be set for any
method. Class and instance methods may not use ACC__
ABSTRACT together with ACC_ FINAL, ACC_ NATIVE,
or ACC_SYNCHRONIZED (that is, native and synchro-
nized methods require an implementation) A class or
instance method may not use ACC__PRIVATE with ACC__
ABSTRACT (that is, a private method cannot be overridden,
so such a method could never be implemented or used). A

50

55

60

65

A Java Virtual Machine implementation must recognize
Code (§4.7.4) and Exceptions (§4.7.5) attributes. A Java
Virtual Machine implementation is required to silently
ignore any or all other attributes in the attributes table of a
method__info structure that it does not recognize. Attributes
not defined in this specification are not allowed to affect the
semantics of the class file, but only to provide additional
descriptive information (§4.7.1).

4.7 Attributes

Attributes are used in the ClassFile (§4.1), field_info
(84.5), method_info (§4.6), and Code attribute (§4.7.4)
structures of the class file format. All attributes have the
following general format:

Case4:10-cv-03561-LB

Documentl Filed08/12/10 Page66 of 161

5,966,702

25

attribute__info {
u2 attribute__name__index;
u4 attribute__length;
ul info[attribute_ length];

}

For all attributes, the attribute_ name_ index must be a
valid unsigned 16-bit index into the constant pool of the
class. The constant pool entry at attribute_ name__index
must be a CONSTANT_Utf8 (§4.4.7) string representing
the name of the attribute. The value of the attribute_ length
item indicates the length of the subsequent information in
bytes. The length does not include the initial six bytes that
contain the attribute name index and attribute length
items.

Certain attributes are predefined as part of the class file
specification. The predefined attributes are the SourceFile
(4.7.2), ConstantValue (§4.7.3), Code (§4.7.4), Exceptions
(84.7.5), LineNumberTable (§4.7.6), and Local-
VariableTable (§4.7.7) attributes. Within the context of their
use in this specification, that is, in the attributes tables of the
class file structures in which they appear, the names of these
predefined attributes are reserved.

Of the predefined attributes, the Code, ConstantValue, and
Exceptions attributes must be recognized and correctly read
by a class file reader for correct interpretation of the class file
by a Java Virtual Machine. Use of the remaining predefined
attributes is optional; a class file reader may use the infor-
mation they contain, and otherwise must silently ignore
those attributes.

4.7.1 Defining and Naming New Attributes

Compilers for Java source code are permitted to define
and emit class files containing new attributes in the attributes
tables of class file structures. Java Virtual Machine imple-
mentations are permitted to recognize and use new attributes
found in the attributes tables of class file structures.
However, all attributes not defined as part of this Java
Virtual Machine specification must not affect the semantics
of class or interface types. Java Virtual Machine implemen-
tations are required to silently ignore attributes they do not
recognize.

For instance, defining a new attribute to support vendor-
specific debugging is permitted. Because Java Virtual
Machine implementations are required to ignore attributes
they do not recognize, class files intended for that particular
Java Virtual Machine implementation will be usable by
other implementations even if those implementations cannot
make use of the additional debugging information that the
class files contain.

Java Virtual Machine implementations are specifically
prohibited from throwing an exception or otherwise refusing
to use class files simply because of the presence of some new
attribute. Of course, tools operating on class files may not
run correctly if given class files that do not contain all the
attributes they require.

Two attributes that are intended to be distinct, but that
happen to use the same attribute name and are of the same
length, will conflict on implementations that recognize
either attribute. Attributes defined other than by Sun must
have names chosen according to the package naming con-
vention defined by The Java Language Specification. For
instance, a new attribute defined by Netscape might have the
name “COM.Netscape.new-attribute™.

Sun may define additional attributes in future versions of
this class file specification.

10

25

35

40

45

50

55

60

65

26

4.7.2 SourceFile Attribute

The SourceFile attribute is an optional fixed-length
attribute in the attributes table of the ClassFile (§4.1) struc-
ture. There can be no more than one SourceFile attribute in
the attributes table of a given ClassFile structure.

The SourceFile attribute has the format

SourceFile_ attribute {
u?2 attribute_name__index;
u4 attribute__length;
u2 sourcefile_index;

}

The items of the SourceFile attribute structure are as
follows:
attribute_name index

The value of the attribute_ name__index item must be a
valid index into the constant_pool table. The constant pool
entry at that index must be a CONSTANT_Utf8_info
(84.4.7) structure representing the string “SourceFile”.
attribute_ length

The value of the attribute length item of a SourceFile
attribute structure must be 2.
sourcefile_ index

The value of the sourcefile_index item must be a valid
index into the constant__pool table. The constant pool entry
at that index must be a CONSTANT _Utf8 info (§4.4.7)
structure representing the string giving the name of the
source file from which this class file was compiled.

Only the name of the source file is given by the SourceFile
attribute. It never represents the name of a directory con-
taining the file or an absolute path name for the file. For
instance, the SourceFile attribute might contain the file name
foojava but not the UNIX pathname /home/lindholm/
foo.java.

4.7.3 ConstantValue Attribute

The Constantvalue attribute is a fixed-length attribute
used in the attributes table of the field_info (§4.5) struc-
tures. A ConstantValue attribute represents the value of a
constant field that must be (explicitly or implicitly) static;
that is, the ACC__STATIC bit (§Table 4.3) in the flags item
of the field_info structure must be set. The field is not
required to be final. There can be no more than one Con-
stantValue attribute in the attributes table of a given field
info structure. The constant field represented by the field
info structure is assigned the value referenced by its
ConstantValue attribute as part of its initialization (§2.16.4).

Every Java Virtual Machine implementation must recog-
nize ConstantValue attributes.

The ConstantValue attribute has the format

ConstantValue__attribute {
u?2 attribute_name__index;
u4 attribute__length;
u2 constantvalue index;

The items of the ConstantValue__attribute structure are as
follows:
attribute__name__index

The value of the attribute name index item must be a
valid index into the constant__pool table. The constant pool
entry at that index must be a CONSTANT Utf8 info
(84.4.7) structure representing the string “ConstantValue”.
attribute_ length

The value of the attribute_length item of a
ConstantValue__attribute structure must be 2.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page67 of 161

5,966,702

27

constantvalue__index

The value of the constantvalue index item must be a
valid index into the constant__pool table. The constant_pool
entry at that index must give the constant value represented
by this attribute.

The constant__pool entry must be of a type appropriate to
the field, as shown by Table 4.5.

Field Type Entry Type

long CONSTANT__Long
float CONSTANT__Float
double CONSTANT__Double

int, short, char, byte, boolean
java.lang.String

CONSTANT _Integer
CONSTANT _ String

4.7.4 Code Attribute

The Code attribute is a variable-length attribute used in
the attributes table of method_info structures. A Code
attribute contains the Java Virtual Machine instructions and
auxiliary information for a single Java method, instance
initialization method (§3.8), or class or interface initializa-
tion method (§3.8). Every Java Virtual Machine implemen-
tation must recognize Code attributes. There must be exactly
one Code attribute in each method info structure.

The Code attribute has the format

Code__attribute {
u? attribute__name__index;
u4 attribute__length;
u2 max_ stack
u2 max__locals;
u4 code__length;
ul code[code_ length];
u2 exception__table__length;
{ u2 start_pc;
u2 end_pc;
u2 handler_ pc;
u2 catch__type;
exception_table[exception_ table_ length];
u? attributes__count;
attribute__info attributes[attributes__count];

The items of the Code__attribute structure are as follows:
attribute__name__index

The value of the attribute_ name__index item must be a
valid index into the constant__pool table. The constant_pool
entry at that index must be a CONSTANT Utf8 info
(§4.4.7) structure representing the string “Code”.
attribute_length

The value of the attribute_length item indicates the
length of the attribute, excluding the initial six bytes.
max_ stack

The value of the max_ stack item gives the maximum
number of words on the operand stack at any point during
execution of this method.
max_ locals

The value of the max_locals item gives the number of
local variables used by this method, including the param-
eters passed to the method on invocation. The index of the
first local variable is 0. The greatest local variable index for
a one-word value is max locals-1. The greatest local
variable index for a two-word value is max_ locals-2.
code_ length

The value of the code_length item gives the number of
bytes in the code array for this method. The value of
code__length must be greater than zero; the code array must
not be empty.

10

15

20

25

30

35

40

45

50

55

60

28

code[]

The code array gives the actual bytes of Java Virtual
Machine code that implement the method.

When the code array is read into memory on a byte
addressable machine, if the first byte of the array is aligned
on a 4-byte boundary, the tableswitch and lookupswitch
32-bit offsets will be 4-byte aligned; refer to the descriptions
of those instructions for more information on the conse-
quences of code array alignment.

The detailed constraints on the contents of the code array
are extensive and are given in a separate section (§4.8).
exception_ table length

The value of the exception_ table length item gives the
number of entries in the exception_ table table.
exception__table[]

Each entry in the exception table array describes one
exception handler in the code array. Each exception_ table
entry contains the following items:
start_pc, end_ pc

The values of the two items start__pc and end__pc indicate
the ranges in the code array at which the exception handler
is active. The value of start pc must be a valid index into
the code array of the opcode of an instruction. The value of
end_ pc either must be a valid index into the code array of
the opcode of an instruction, or must be equal to code__
length, the length of the code array. The value of start pc
must be less than the value of end_ pc.

The start_pcis inclusive and end__pc is exclusive; that is,
the exception handler must be active while the program

counter is within the interval [start_pc, end_ pc).”

“The fact that end_pc is exclusive is an historical mistake in the Java Virtual
Machine: if the Java Virtual Machine code for a method is exactly 65535
bytes long and ends with an instruction that is one byte long, then that
instruction cannot be protected by an exception handler. A compiler writer can
work around this bug by limiting the maximum size of the generated Java
Virtual Machine code for any method, instance initialization method, or static
initializer (the size of any code array) to 65534 bytes.

handler_ pc

The value of the handler_ pc item indicates the start of the
exception handler. The value of the item must be a valid
index into the code array, must be the index of the opcode
of an instruction, and must be less than the value of the
code__length item.
catch_ type

If the value of the catch_type item is nonzero, it must be
a valid index into the constant pool table. The constant__
pool entry at that index must be a CONSTANT _Class__info
(84.4.1) structure representing a class of exceptions that this
exception handler is designated to catch. This class must be
the class Throwable or one of its subclasses. The exception
handler will be called only if the thrown exception is an
instance of the given class or one of its subclasses.

If the value of the catch_ type item is zero, this exception
handler is called for all exceptions. This is used to imple-
ment finally (see Section 7.13, “Compiling finally”).
attributes count

The value of the attributes count item indicates the
number of attributes of the Code attribute.
attributes]]

Each value of the attributes table must be a variable-
length attribute structure. A Code attribute can have any
number of optional attributes associated with it.

Currently, the LineNumberTable (§4.7.6) and LocalVari-
ableTable (§4.7.7) attributes, both of which contain debug-
ging information, are defined and used with the Code
attribute.

A Java Virtual Machine implementation is permitted to
silently ignore any or all attributes in the attributes table of
a Code attribute. Attributes not defined in this specification

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page68 of 161

5,966,702

29

are not allowed to affect the semantics of the class file, but
only to provide additional descriptive information (§4.7.1).
4.7.5 Exceptions Attribute

The Exceptions attribute is a variable-length attribute
used in the attributes table of a method__info (§4.6) struc-
ture. The Exceptions attribute indicates which checked
exceptions a method may throw. There must be exactly one
Exceptions attribute in each method__info structure.

The Exceptions attribute has the format

Exceptions_ attribute {
u? attribute__name__index;
u4 attribute__length;
u2 number__of__exceptions;
u2 exception_index_ table[number__of_exceptions];

The items of the Exceptions_ attribute structure are as
follows:
attribute__name__index

The value of the attribute_ name__index item must be a
valid index into the constant_ pool table. The constant pool
entry at that index must be the CONSTANT__Utf8_ info
(§4.4.7) structure representing the string “Exceptions”.
attribute__length

The value of the attribute length item indicates the
attribute length, excluding the initial six bytes.
number_of exceptions

The value of the number_of exceptions item indicates
the number of entries in the exception index table.
exception__index_ table[]

Each nonzero value in the exception_index_ table array
must be a valid index into the constant_pool table. For each
table item, if exception index table[i] !=0, where 0 £
i<number_of _exceptions, then the constant pool entry at
index exception__index_ table[i] must be a CONSTANT _
Class__info (4.4.1) structure representing a class type that
this method is declared to throw.

A method should only throw an exception if at least one
of the following three criteria is met:

The exception is an instance of RuntimeException or one
of its subclasses.

The exception is an instance of Error or one of its
subclasses.

The exception is an instance of one of the exception
classes specified in the exception__index_ table above,
or one of their subclasses.

The above requirements are not currently enforced by the
Java Virtual Machine; they are only enforced at compile
time. Future versions of the Java language may require more
rigorous checking of throws clauses when classes are veri-
fied.

4.7.6 LineNumberTable Attribute

The LineNumberTable attribute is an optional variable-
length attribute in the attributes table of a Code (§4.7.4)
attribute. It may be used by debuggers to determine which
part of the Java Virtual Machine code array corresponds to
a given line number in the original Java source file. If
LineNumberTable attributes are present in the attributes
table of a given Code attribute, then they may appear in any
order. Furthermore, multiple LineNumberTable attributes
may together represent a given line of a Java source file; that
is, LineNumberTable attributes need not be one-to-one with
source lines.?

>The javac compiler in Sun’s JDK 1.0.2 release can in fact generate
LineNumberTable attributes which are not in line number order and which are
not one-to-one with source lines. This is unfortunate, as we would prefer to
specify a one-to-one, ordered mapping of LineNumberTable attributes to
source lines, but must yield to backward compatibility.

10

15

20

25

30

35

40

45

50

55

60

65

30

The LineNumberTable attribute has the format

LineNumberTable_attributes {
u?2 attribute__name__index;
u4 attribute__length;
u2 line__number__table_ length;
{ u2start_pc;
u2 line_ number
} line__number_table[line_number_ table_ lengthl];

}

The items of the LineNumberTable attribute structure
are as follows:
attribute__name__index

The value of the attribute_ name__index item must be a
valid index into the constant__pool table. The constant pool
entry at that index must be a CONSTANT_Utf8_info
(84.4.7) structure representing the string “LineNumberT-
able”.
attribute_ length

The value of the attribute_length item indicates the
length of the attribute, excluding the initial six bytes.
line_ number__table_ length

The value of the line number_table length item indi-
cates the number of entries in the line_ number__table array.
line__number__table[]

Each entry in the line__number__table array indicates that
the line number in the original Java source file changes at a
given point in the code array. Each entry must contain the
following items:
start__pc

The value of the start pc item must indicate the index
into the code array at which the code for a new line in the
original Java source file begins. The value of start pc must
be less than the value of the code_ length item of the Code
attribute of which this LineNumberTable is an attribute.
line_ number

The value of the line_ number item must give the corre-
sponding line number in the original Java source file.
4.7.7 LocalVariableTable Attribute

The LocalVariableTable attribute is an optional variable-
length attribute of a Code (§4.7.4) attribute. It may be used
by debuggers to determine the value of a given local variable
during the execution of a method. If LocalVariableTable
attributes are present in the attributes table of a given Code
attribute, then they may appear in any order. There may be
no more than one LocalVariableTable attribute per local
variable in the Code attribute.

The LocalVariableTable attribute has the format

Local VariableTable__ attribute {

u?2 attribute__name__index;

u4 attribute__length;

u2 local__variable__table_ length;

{ u2start_pc;
u2 length;
u2 name__index;
u2 descriptor__index;
u2 index;

} local_variable__table [local_variable_ table_length];

}

The items of the LocalVariableTable attribute structure
are as follows:
attribute_ name__index

The value of the attribute name index item must be a
valid index into the constant__pool table. The constant pool
entry at that index must be a CONSTANT_Utf8_info
(84.4.7) structure representing the string “LocalVariable-
Table”.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page69 of 161

5,966,702

31

attribute__length

The value of the attribute length item indicates the
length of the attribute, excluding the initial six bytes.
local wvariable table length

The value of the local variable_ table length item indi-
cates the number of entries in the local variable table
array.
local _variable table[]

Each entry in the local_variable table array indicates a
range of code array offsets within which a local variable has
a value. It also indicates the index into the local variables of
the current frame at which that local variable can be found.
Each entry must contain the following items:
start_pc, length

The given local variable must have a value at indices into
the code array in the interval [start_pc, start pc+length],
that is, between start_pc and start__pc+length inclusive. The
value of start__pc must be a valid index into the code array
of this Code attribute of the opcode of an instruction. The
value of start pc+length must be either a valid index into
the code array of this Code attribute of the opcode of an
instruction, or the first index beyond the end of that code
array.
name__index, descriptor__index

The value of the name__index item must be a valid index
into the constant_pool table. The constant pool entry at
that index must contain a CONSTANT _Utf8 info (§4.4.7)
structure representing a valid Java local variable name
stored as a simple name (§2.7.1).

The value of the descriptor_index item must be a valid
index into the constant _pool table. The constant__pool entry
at that index must contain a CONSTANT_Utf 8_info
(§4.4.7) structure representing a valid descriptor for a Java
local variable. Java local variable descriptors have the same
form as field descriptors (§4.3.2).
index

The given local variable must be at index in its method’s
local variables. If the local variable at index is a two-word
type (double or long), it occupies both index and index+1.
4.8 Constraints on Java Virtual Machine Code

The Java Virtual Machine code for a method, instance
initialization method (§3.8), or class or interface initializa-
tion method (§3.8) is stored in the code array of the Code
attribute of a method_info structure of a class file. This
section describes the constraints associated with the contents
of the Code attribute structure.

4.8.1 Static Constraints

The static constraints on a class file are those defining the
well-formedness of the file. With the exception of the static
constraints on the Java Virtual Machine code of the class file,
these constraints have been given in the previous section.
The static constraints on the Java Virtual Machine code in a
class file specify how Java Virtual Machine instructions
must be laid out in the code array, and what the operands of
individual instructions must be.

The static constraints on the instructions in the code array
are as follows:

The code array must not be empty, so the code length

attribute cannot have the value 0.

The opcode of the first instruction in the code array begins
at index 0.

Only instances of the instructions documented in (§6.4)
may appear in the code array. Instances of instructions
using the reserved opcodes (§6.2), the _quick opcodes
documented in Chapter 9, “An Optimization,” or any
opcodes not documented in this specification may not
appear in the code array.

10

20

25

30

35

40

45

50

55

60

65

32

For each instruction in the code array except the last, the
index of the opcode of the next instruction equals the
index of the opcode of the current instruction plus the
length of that instruction, including all its operands.
The wide instruction is treated like any other instruc-
tion for these purposes; the opcode specifying the
operation that a wide instruction is to modify is treated
as one of the operands of that wide instruction. That
opcode must never be directly reachable by the com-
putation.

The last byte of the last instruction in the code array must
be the byte at index code_length 1.

The static constraints on the operands of instructions in

the code array are as follows:

The target of each jump and branch instruction (jst, jsr_ w,
goto, goto_w, ifeq, ifne, iflt, ifge, ifgt, ifle, ifnull,
ifnonnull, if icmpeq, if icmpne, if icmplt,
if _icmpge, if icmpgt, if icmple, if acmpeq,
if _acmpne) must be the opcode of an instruction
within this method. The target of a jump or branch
instruction must never be the opcode used to specify
the operation to be modified by a wide instruction; a
jump or branch target may be the wide instruction
itself.

Each target, including the default, of each tableswitch
instruction must be the opcode of an instruction within
this method. Each tableswitch instruction must have a
number of entries in its jump table that is consistent
with its low and high jump table operands, and its low
value must be less than or equal to its high value. No
target of a tableswitch instruction may be the opcode
used to specify the operation to be modified by a wide
instruction; a tableswitch target may be a wide instruc-
tion itself.

Each target, including the default, of each lookupswitch
instruction must be the opcode of an instruction within
this method. Each lookupswitch instruction must have
anumber of match-offset pairs that is consistent with its
npairs operand. The match-offset pairs must be sorted
in increasing numerical order by signed match value.
No target of a lookupswitch instruction may be the
opcode used to specify the operation to be modified by
a wide instruction; a lookupswitch target may be a wide
instruction itself

The operand of each 1dc and 1dc_ w instruction must be a
valid index into the constant_pool table. The constant
pool entry referenced by that index must be of type
CONSTANT__Integer, CONSTANT__Float, or
CONSTANT_ String.

The operand of each 1dc2_ w instruction must be a valid
index into the constant_pool table. The constant pool
entry referenced by that index must be of type
CONSTANT_Long or CONSTANT__double. In
addition, the subsequent constant pool index must also
be a valid index into the constant pool, and the constant
pool entry at that index must not be used.

The operand of each getfield, putfield, getstatic, and
putstatic instruction must be a valid index into the
constant__pool table. The constant pool entry refer-
enced by that index must be of type CONSTANT _
Fieldref.

The index operand of each invokevirtual, invokespecial,
and invokestatic instruction must be a valid index into
the constant_pool table. The constant pool entry ref-
erenced by that index must be of type CONSTANT _
Methodref.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page70 of 161

5,966,702

33

Only the invokespecial instruction is allowed to invoke
the method <init>, the instance initialization method
(83.8). No other method whose name begins with the
character ‘<’ (‘u003¢’) may be called by the method
invocation instructions. In particular, the class initial-
ization method <clinit> is never called explicitly from
Java Virtual Machine instructions, but only implicitly
by the Java Virtual Machine itself.

The index operand of each invokeinterface instruction
must be a valid index into the constant_ pool table. The
constant pool entry referenced by that index must be of
type CONSTANT InterfaceMethodref. The value of
the nargs operand of each invokeinterface instruction
must be the same as the number of argument words
implied by the descriptor of the CONSTANT _
NameAndType_info structure referenced by the
CONSTANT _ InterfaceMethodref constant pool entry.
The fourth operand byte of each invokeinterface
instruction must have the value zero.

The index operand of each instanceof, checkcast, new,
anewarray, and multi-anewarray instruction must be a
valid index into the constant_ pool table. The constant
pool entry referenced by that index must be of type
CONSTANT__Class.

No anewarray instruction may be used to create an array
of more than 255 dimensions.

No new instruction may reference a CONSTANT _ Class
constant__pool table entry representing an array class.
The new instruction cannot be used to create an array.
The new instruction also cannot be used to create an
interface or an instance of an abstract class, but those
checks are performed at link time.

A multianewarray instruction must only be used to create
an array of a type that has at least as many dimensions
as the value of its dimensions operand. That is, while a
multianewarray instruction is not required to create all
of the dimensions of the array type referenced by its
CONSTANT _Class operand, it must not attempt to
create more dimensions than are in the array type. The
dimensions operand of each multianewarray instruction
must not be zero.

The atype operand of each newarray instruction must take
one of the values T_BOOLEAN (4), T_CHAR (5),
T _FLOAT (§6), T _DOUBLE (7), T_BYTE (8),
T_SHORT (9), T_INT (10), or T_LONG (11).

The index operand of each iload, fload, aload, istore,
fstore, astore, wide, iinc, and ret instruction must be a
natural number no greater than max_ locals-1.

The implicit index of each iload <n>, fload_<n>,
aload,; <n>, istore_ <n>, fstore_ <n>, and astore_ <n>
instruction must be no greater than the value of max__
locals-1.

The index operand of each lload, dload, Istore, and dstore
instruction must be no greater than the value of max__
locals-2.

The implicit index of each lload <n>, dload <n>,
Istore__<n>, and dstore_ <n> instruction must be no
greater than the value of max_locals-2.

4.8.2 Structural Constraints

The structural constraints on the code array specify con-
straints on relationships between Java Virtual Machine
instructions. The structural constraints are as follows:

Each instruction must only be executed with the appro-
priate type and number of arguments in the operand
stack and local variables, regardless of the execution

10

15

20

25

30

35

40

45

50

55

60

65

34

path that leads to its invocation. An instruction oper-
ating on values of type int is also permitted to operate
on values of type byte, char, and short. (As noted in
§3.11.1, the Java Virtual Machine internally converts
values of types byte, char, and short to type int.)

Where an instruction can be executed along several
different execution paths, the operand stack must have
the same size prior to the execution of the instruction,
regardless of the path taken.

At no point during execution can the order of the words
of a two-word type (long or double) be reversed or split
up. At no point can the words of a two-word type be
operated on individually.

No local variable (or local variable pair, in the case of a
two-word type) can be accessed before it is assigned a
value.

At no point during execution can the operand stack grow
to contain more than max_ stack words.

At no point during execution can more words be popped
from the operand stack than it contains.

Each invokespecial instruction must name only an
instance initialization method <init>, a method in this,
a private method, or a method in a superclass of this.

When the instance initialization method <init>is invoked,
an uninitialized class instance must be in an appropriate
position on the operand stack. The <init> method must
never be invoked on an initialized class instance.

When any instance method is invoked, or when any
instance variable is accessed, the class instance that
contains the instance method or instance variable must
already be initialized.

There must never be an uninitialized class instance on the
operand stack or in a local variable when any back-
wards branch is taken. There must never be an unini-
tialized class instance in a local variable in code
protected by an exception handler or a finally clause.
However, an uninitialized class instance may be on the
operand stack in code protected by an exception han-
dler or a finally clause. When an exception is thrown,
the contents of the operand stack are discarded.

Each instance initialization method (§3.8), except for the
instance initialization method derived from the con-
structor of class Object, must call either another
instance initialization method of this or an instance
initialization method of its immediate superclass super
before its instance members are accessed. However,
this is not necessary in the case of class Object, which
does not have a superclass (§2.4.6).

The arguments to each method invocation must be
method invocation compatible (§2.6.7) with the
method descriptor (§4.3.3).

An abstract method must never be invoked.

Each return instruction must match its method’s return
type. If the method returns a byte, char, short, or int,
only the ireturn instruction may be used. If the method
returns a float, long, or double, only an freturn, Ireturn,
or dreturn instruction, respectively, may be used. If the
method returns a reference type, it must do so using an
areturn instruction, and the returned value must be
assignment compatible (§2.6.6) with the return descrip-
tor (§4.3.3) of the method. All instance initialization
methods, static initializers, and methods declared to
return void must only use the return instruction.

If getfield or putfield is used to access a protected field of
a superclass, then the type of the class instance being

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page71 of 161

5,966,702

35

accessed must be the same as or a subclass of the
current class. If invokevirtual is used to access a
protected method of a superclass, then the type of the
class instance being accessed must be the same as or a
subclass of the current class.

The type of every class instance loaded from or stored into
by a getfield or putfield instruction must be an instance
of the class type or a subclass of the class type.

The type of every value stored by a putfield or putstatic
instruction must be compatible with the descriptor of
the field (§4.3.2) of the class instance or class being
stored into. If the descriptor type is byte, char, short, or
int, then the value must be an int. If the descriptor type
is float, long, or double, then the value must be a float,
long, or double, respectively. If the descriptor type is a
reference type, then the value must be of a type that is
assignment compatible (§2.6.6) with the descriptor
type.

The type of every value stored into an array of type
reference by an aastore instruction must be assignment
compatible (§2.6.6) with the component type of the
array.

Each athrow instruction must only throw values that are
instances of class Throwable or of subclasses of Throw-
able.

Execution never falls off the bottom of the code array.

No return address (a value of type returnAddress) may be
loaded from a local variable.

The instruction following each jsr or jsr_w instruction
only may be returned to by a single ret instruction.

No jsror jsr_ winstruction may be used to recursively call
a subroutine if that subroutine is already present in the
subroutine call chain. (Subroutines can be nested when
using try-finally constructs from within a finally clause.
For more information on Java Virtual Machine
subroutines, see §4.9.6)

Each instance of type returnaddress can be returned to at
most once. If a ret instruction returns to a point in the
subroutine call chain above the ret instruction corre-
sponding to a given instance of type returnAddress,
then that instance can never be used as a return address.

4.9 Verification of Class Files

Even though Sun’s Java compiler attempts to produce
only class files that satisfy all the static constraints in the
previous sections, the Java Virtual Machine has no guarantee
that any file it is asked to load was generated by that
compiler, or is properly formed. Applications such as Sun’s
HotJava World Wide Web browser do not download source
code which they then compile; these applications download
already-compiled class files. The HotJava browser needs to
determine whether the class file was produced by a trust-
worthy Java compiler or by an adversary attempting to
exploit the interpreter.

An additional problem with compile-time checking is
version skew. A user may have successfully compiled a
class, say PurchaseStockOptions, to be a subclass of Trad-
ingClass. But the definition of TradingClass might have
changed in a way that is not compatible with preexisting
binaries since the time the class was compiled. Methods
might have been deleted, or had their return types or
modifiers changed. Fields might have changed types or
changed from instance variables to class variables. The
access modifiers of a method or variable may have changed
from public to private. For a discussion of these issues, see
Chapter 13, “Binary Compatibility,” in The Java Language
Specification.

10

15

20

25

30

35

40

45

50

55

60

65

36

Because of these potential problems, the Java Virtual
Machine needs to verity for itself that the desired constraints
hold on the class files it attempts to incorporate. A well-
written Java Virtual Machine emulator could reject poorly
formed instructions when a class file is loaded. Other
constraints could be checked at run time. For example, a
Java Virtual Machine implementation could tag runtime data
and have each instruction check that its operands are of the
right type.

Instead, Sun’s Java Virtual Machine implementation veri-
fies that each class file it considers untrustworthy satisfies
the necessary constraints at linking time (§2.16.3). Struc-
tural constraints on the Java Virtual Machine code are
checked using a simple theorem prover.

Linking-time verification enhances the performance of
the interpreter. Expensive checks that would otherwise have
to be performed to verify constraints at run time for each
interpreted instruction can be eliminated. The Java Virtual
Machine can assume that these checks have already been
performed. For example, the Java Virtual Machine will
already know the following:

There are no operand stack overflows or underflows.

All local variable uses and stores are valid.

The arguments to all the Java Virtual Machine instructions
are of valid types.

Sun’s class file verifier is independent of any Java com-
piler. It should certify all code generated by Sun’s current
Java compiler; it should also certify code that other com-
pilers can generate, as well as code that the current compiler
could not possibly generate. Any class file that satisfies the
structural criteria and static constraints will be certified by
the verifier.

The class file verifier is also independent of the Java
language. Other languages can be compiled into the class
format, but will only pass verification if they satisfy the
same constraints as a class file compiled from Java source.
4.9.1 The Verification Process

The class file verifier operates in four passes:

Pass 1: When a prospective class file is loaded (§2.16.2)
by the Java Virtual Machine, the Java Virtual Machine first
ensures that the file has the basic format of a Java class file.
The first four bytes must contain the right magic number. All
recognized attributes must be of the proper length. The class
file must not be truncated or have extra bytes at the end. The
constant pool must not contain any superficially unrecog-
nizable information.

While class file verification properly occurs during class
linking (§2.16.3), this check for basic class file integrity is
necessary for any interpretation of the class file contents and
can be considered to be logically part of the verification
process.

Pass 2: When the class file is linked, the verifier performs
all additional verification that can be done without looking
at the code array of the Code attribute (§4.7.4). The checks
performed by this pass include the following:

Ensuring that final classes are not subclassed, and that

final methods are not overridden.

Checking that every class (except Object) has a super-
class.

Ensuring that the constant pool satisfies the documented
static constraints; for example, class references in the
constant pool must contain a field that points to a
CONSTANT Utf8 string reference in the constant
pool.

Checking that all field references and method references
in the constant pool have valid names, valid classes,
and a valid type descriptor.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page72 of 161

5,966,702

37

Note that when it looks at field and method references,
this pass does not check to make sure that the given field or
method actually exists in the given class; nor does it check
that the type descriptors given refer to real classes. It only
checks that these items are well formed. More detailed
checking is delayed until passes 3 and 4.

Pass 3: Still during linking, the verifier checks the code
array of the Code attribute for each method of the class file
by performing data-flow analysis on each method. The
verifier ensures that at any given point in the program, no
matter what code path is taken to reach that point:

The operand stack is always the same size and contains
the same types of objects.

No local variable is accessed unless it is known to contain
a value of an appropriate type.

Methods are invoked with the appropriate arguments.
Fields are assigned only using values of appropriate types.

All opcodes have appropriate type arguments on the

operand stack and in the local variables.

For further information on this pass, see Section 4.9.2,
“The Bytecode Verifier.”

Pass 4: For efficiency reasons, certain tests that could in
principle be performed in Pass 3 are delayed until the first
time the code for the method is actually invoked. In so
doing, Pass 3 of the verifier avoids loading class files unless
it has to.

For example, if a method invokes another method that
returns an instance of class A, and that instance is only
assigned to a field of the same type, the verifier does not
bother to check if the class A actually exists. However, if it
is assigned to a field of the type B, the definitions of both A
and B must be loaded in to ensure that A is a subclass of B.

Pass 4 is a virtual pass whose checking is done by the
appropriate Java Virtual Machine instructions. The first time
an instruction that references a type is executed, the execut-
ing instruction does the following:

Loads in the definition of the referenced type if it has not
already been loaded.

Checks that the currently executing type is allowed to

reference the type.

Initializes the class, if this has not already been done.

The first time an instruction invokes a method, or accesses
or modifies a field, the executing instruction does the fol-
lowing:

Ensures that the referenced method or field exists in the

given class.

Checks that the referenced method or field has the indi-

cated descriptor.

Checks that the currently executing method has access to

the referenced method or field.

The Java Virtual Machine does not have to check the type
of the object on the operand stack. That check has already
been done by Pass 3. Errors that are detected in Pass 4 cause
instances of subclasses of LinkageError to be thrown.

A Java Virtual Machine is allowed to perform any or all
of the Pass 4 steps, except for class or interface initialization,
as part of Pass 3; see 2.16. 1. “Virtual Machine Start-up” for
an example and more discussion.

In Sun’s Java Virtual Machine implementation, after the
verification has been performed, the instruction in the Java
Virtual Machine code is replaced with an alternative form of
the instruction (see Chapter 9, “An Optimization™). For
example, the opcode new is replaced with new__quick. This
alternative instruction indicates that the verification needed
by this instruction has taken place and does not need to be

10

15

25

30

35

40

45

50

55

60

65

38

performed again. Subsequent invocations of the method will
thus be faster. It is illegal for these alternative instruction
forms to appear in class files, and they should never be
encountered by the verifier.
4.9.2 The Bytecode Verifier

As indicated earlier, Pass 3 of the verification process is
the most complex of the four passes of class file verification.
This section looks at the verification of Java Virtual Machine
code in more detail.

The code for each method is verified independently. First,
the bytes that make up the code are broken up into a
sequence of instructions, and the index into the code array
of the start of each instruction is placed in an array. The
verifier then goes through the code a second time and parses
the instructions. During this pass a data structure is built to
hold information about each Java Virtual Machine instruc-
tion in the method. The operands, if any, of each instruction
are checked to make sure they are valid. For instance:

Branches must be within the bounds of the code array for
the method.

The targets of all control-flow instructions are each the
start of an instruction. In the case of a wide instruction,
the wide opcode is considered the start of the
instruction, and the opcode giving the operation modi-
fied by that wide instruction is not considered to start an
instruction. Branches into the middle of an instruction
are disallowed.

No instruction can access or modify a local variable at an
index greater than the number of local variables that its
method indicates it uses.

All references to the constant pool must be to an entry of
the appropriate type. For example: the instruction ldc
can only be used for data of type int or float, or for
instances of class String; the instruction getfield must
reference a field.

The code does not end in the middle of an instruction.

Execution cannot fall off the end of the code.

For each exception handler, the starting and ending point
of code protected by the handler must be at the begin-
ning of an instruction. The starting point must be before
the ending point. The exception handler code must start
at a valid instruction, and it may not start at an opcode
being modified by the wide instruction.

For each instruction of the method, the verifier records the
contents of the operand stack and the contents of the local
variables prior to the execution of that instruction. For the
operand stack, it needs to know the stack height and the type
of each value on it. For each local variable, it needs to know
either the type of the contents of that local variable, or that
the local variable contains an unusable or unknown value (it
might be uninitialized). The bytecode verifier does not need
to distinguish between the integral types (e.g., byte, short,
char) when determining the value types on the operand
stack.

Next, a data-flow analyzer is initialized. For the first
instruction of the method, the local variables which repre-
sent parameters initially contain values of the types indi-
cated by the method’s type descriptor; the operand stack is
empty. All other local variables contain an illegal value. For
the other instructions, which have not been examined yet, no
information is available regarding the operand stack or local
variables.

Finally, the data-flow analyzer is run. For each instruction,
a “changed” bit indicates whether this instruction needs to
be looked at. Initially, the “changed” bit is only set for the
first instruction. The data-flow analyzer executes the follow-
ing loop:

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page73 of 161

5,966,702

39

1. Select a virtual machine instruction whose “changed”
bit is set. If no instruction remains whose “changed” bit
is set, the method has successfully been verified.
Otherwise, turn off the “changed” bit of the selected
instruction.

2. Model the effect of the instruction on the operand stack
and local variables:

If the instruction uses values from the operand stack,
ensure that there are a sufficient number of values on
the stack and that the top values on the stack are of
an appropriate type. Otherwise, verification fails.

If the instruction uses a local variable, ensure that the
specified local variable contains a value of the appro-
priate type. Otherwise, verification fails.

If the instruction pushes values onto the operand stack,
ensure that there is sufficient room on the operand
stack for the new values. Add the indicated types to
the top of the modeled operand stack.

If the instruction modifies a local variable, record that
the local variable now contains the new type.

3. Determine the instructions that can follow the current
instruction. Successor instructions can be one of the
following:

The next instruction, if the current instruction is not an
unconditional control transfer instruction (for
instance goto, return or athrow). Verification fails if
it is possible to “fall off” the last instruction of the
method.

The target(s) of a conditional or unconditional branch
or switch.

Any exception handlers for this instruction.

4. Merge the state of the operand stack and local variables
at the end of the execution of the current instruction
into each of the successor instructions. In the special
case of control transfer to an exception handler, the
operand stack is set to contain a single object of the
exception type indicated by the exception handler
information.

If this is the first time the successor instruction has been
visited, record that the operand stack and local
variables values calculated in steps 2 and 3 are the
state of the operand stack and local variables prior to
executing the successor instruction. Set the
“changed” bit for the successor instruction.

If the successor instruction has been seen before, merge
the operand stack and local variable values calcu-
lated in steps 2 and 3 into the values already there.
Set the “changed” bit if there is any modification to
the values.

5. Continue at step 1.

To merge two operand stacks, the number of values on
each stack must be identical. The types of values on the
stacks must also be identical, except that differently typed
reference values may appear at corresponding places on the
two stacks. In this case, the merged operand stack contains
a reference to an instance of the first common superclass or
common superinterface of the two types. Such a reference
type always exists because the type Object is a supertype of
all class and interface types. If the operand stacks cannot be
merged, verification of the method fails.

To merge two local variable states, corresponding pairs of
local variables are compared. If the two types are not
identical, then unless both contain reference values, the
verifier records that the local variable contains an unusable
value. If both of the pair of local variables contain reference
values, the merged state contains a reference to an instance
of the first common superclass of the two types.

10

15

20

25

30

35

40

45

50

55

60

65

40

If the data-flow analyzer runs on a method without
reporting a verification failure, then the method has been
successfully verified by Pass 3 of the class file verifier.

Certain instructions and data types complicate the data-
flow analyzer. We now examine each of these in more detail.
4.9.3 Long Integers and Doubles

Values of the long and double types each take two
consecutive words on the operand stack and in the local
variables.

Whenever a long or double is moved into a local variable,
the subsequent local variable is marked as containing the
second half of a long or double. This special value indicates
that all references to the long or double must be through the
index of the lower-numbered local variable.

Whenever any value is moved to a local variable, the
preceding local variable is examined to see if it contains the
first word of a long or a double. If so, that preceding local
variable is changed to indicate that it now contains an
unusable value. Since half of the long or double has been
overwritten, the other half must no longer be used.

Dealing with 64-bit quantities on the operand stack is
simpler; the verifier treats them as single units on the stack.
For example, the verification code for the dadd opcode (add
two double values) checks that the top two items on the stack
are both of type double. When calculating operand stack
length, values of type long and double have length two.

Untyped instructions that manipulate the operand stack
must treat values of type double and long as atomic. For
example, the verifier reports a failure if the top value on the
stack is a double and it encounters an instruction such as pop
or dup. The instructions pop2 or dup2 must be used instead.
4.9.4 Instance Initialization Methods and Newly Created
Objects

Creating a new class instance is a multistep process. The
Java statement

new myclass(i, j, k);

can be implemented by the following:

new

#1 // Allocate uninitialized space for myClass
dup // Duplicate object on the operand stack
iload_ 1 // Push i
iload_ 2 // Push j
iload_3 // Push k

invokespecial myClass.<init> // Initialize object

This instruction sequence leaves the newly created and
initialized object on top of the operand stack. (More
examples of compiling Java code to the instruction set of the
Java Virtual Machine are given in Chapter 7, “Compiling for
the Java Virtual Machine.”)

The instance initialization method <init>for class
myClass sees the new uninitialized object as its this argu-
ment in local variable 0. It must either invoke an alternative
instance initialization method for class myClass or invoke
the initialization method of a superclass on the this object
before it is allowed to do anything else with this.

When doing dataflow analysis on instance methods, the
verifier initializes local variable O to contain an object of the
current class, or, for instance initialization methods, local
variable O contains a special type indicating an uninitialized
object. After an appropriate initialization method is invoked
(from the current class or the current superclass) on this
object, all occurrences of this special type on the verifier’s

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page74 of 161

5,966,702

41

model of the operand stack and in the local variables are
replaced by the current class type. The verifier rejects code
that uses the new object before it has been initialized or that
initializes the object twice. In addition, it ensures that every
normal return of the method has either invoked an initial-
ization method in the class of this method or in the direct
superclass.

Similarly, a special type is created and pushed on the
verifier’s model of the operand stack as the result of the Java
Virtual Machine instruction new. The special type indicates
the instruction by which the class instance was created and
the type of the uninitialized class instance created. When an
initialization method is invoked on that class instance, all
occurrences of the special type are replaced by the intended
type of the class instance. This change in type may propagate
to subsequent instructions as the datatlow analysis proceeds.

The instruction number needs to be stored as part of the
special type, as there may be multiple not-yet-initialized
instances of a class in existence on the operand stack at one
time. For example, the Java Virtual Machine instruction
sequence that implements

new InputStream(new Foo(), new InputStream(“foo™))
may have two uninitialized instances of InputStream on the
operand stack at once. When an initialization method is
invoked on a class instance, only those occurrences of the
special type on the operand stack or in the registers that are
the same object as the class instance are replaced.

A valid instruction sequence must not have an uninitial-
ized object on the operand stack or in a local variable during
a backwards branch, or in a local variable in code protected
by an exception handler or a finally clause. Otherwise, a
devious piece of code might fool the verifier into thinking it
had initialized a class instance when it had, in fact, initial-
ized a class instance created in a previous pass through the
loop.

4.9.5 Exception Handlers

Java Virtual Machine code produced from Sun’s Java
compiler always generates exception handlers such that:

The ranges of instructions protected by two different
exception handlers always are either completely
disjoint, or else one is a subrange of the other. There is
never a partial overlap of ranges.

The handler for an exception will never be inside the code
that is being protected.

The only entry to an exception handler is through an
exception. It is impossible to fall through or “goto” the
exception handler.

These restrictions are not enforced by the class file verifier
since they do not pose a threat to the integrity of the Java
Virtual Machine. As long as every nonexceptional path to
the exception handler causes there to be a single object on
the operand stack, and as long as all other criteria of the
verifier are met, the verifier will pass the code.

4.9.6 Exceptions and Finally

Given the fragment of Java code

try {
startFaucet ();
waterLawn ();
} finally {
stopFaucet ();

the Java language guarantees that stopFaucet is invoked (the
faucet is turned off) whether we finish watering the lawn or

10

15

20

25

30

35

40

45

50

55

60

65

42

whether an exception occurs while starting the faucet or
watering the lawn. That is, the finally clause is guaranteed to
be executed whether its try clause completes normally, or
completes abruptly by throwing an exception.

To implement the try-finally construct, the Java compiler
uses the exception-handling facilities together with two
special instructions jsr (“jump to subroutine”) and ret
(“return from subroutine”). The finally clause is compiled as
a subroutine within the Java Virtual Machine code for its
method, much like the code for an exception handler. When
a jsr instruction that invokes the subroutine is executed, it
pushes its return address, the address of the instruction after
the jsr that is being executed, onto the operand stack as a
value of type returnAddress. The code for the subroutine
stores the return address in a local variable. At the end of the
subroutine, a ret instruction fetches the return address from
the local variable and transfers control to the instruction at
the return address.

Control can be transferred to the finally clause (the finally
subroutine can be invoked) in several different ways. If the
try clause completes normally, the finally subroutine is
invoked via a jsr instruction before evaluating the next Java
expression. A break or continue inside the try clause that
transfers control outside the try clause executes a jsr to the
code for the finally clause first. If the try clause executes a
return, the compiled code does the following:

1. Saves the return value (if any) in a local variable.

2. Executes a jsr to the code for the finally clause.

3. Upon return from the finally clause, returns the value

saved in the local variable.

The compiler sets up a special exception handler which
catches any exception thrown by the try clause. If an
exception is thrown in the try clause, this exception handler
does the following:

1. Saves the exception in a local variable.

2. Executes a jsr to the finally clause.

3. Upon return from the finally clause, rethrows the

exception.

For more information about the implementation of Java’s
try-finally construct, see Section 7.13. “Compiling finally.”

The code for the finally clause presents a special problem
to the verifier. Usually, if a particular instruction can be
reached via multiple paths and a particular local variable
contains incompatible values through those multiple paths,
then the local variable becomes unusable. However, a finally
clause might be called from several different places, yielding
several different circumstances:

The invocation from the exception handler may have a
certain local variable that contains an exception.

The invocation to implement return may have some local

variable that contains the return value.

The invocation from the bottom of the try clause may
have an indeterminate value in that same local variable.

The code for the finally clause itself might pass
verification, but after updating all the successors of the ret
instruction, the verifier would note that the local variable
that the exception handler expects to hold an exception, or
that the return code expects to hold a return value, now
contains an indeterminate value.

Verifying code that contains a finally clause is compli-
cated. The basic idea is the following:

Each instruction keeps track of the list of jsr targets
needed to reach that instruction. For most code, this list
is empty. For instructions inside code for the finally
clause, it is of length one. For multiply nested finally
code (extremely rare!), it may be longer than one.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page75 of 161

5,966,702

43

For each instruction and each isr needed to reach that
instruction, a bit vector is maintained of all local
variables accessed or modified since the execution of
the jsr instruction.

When executing the ret instruction, which implements a
return from a subroutine, there must be only one
possible subroutine from which the instruction can be
returning. Two different subroutines cannot “merge”
their execution to a single ret instruction.

To perform the data-flow analysis on a ret instruction, a
special procedure is used. Since the verifier knows the
subroutine from which the instruction must be
returning, it can find all the jsr instructions that call the
subroutine and merge the state of the operand stack and
local variables at the time of the ret instruction into the
operand stack and local variables of the instructions
following the jsr. Merging uses a special set of values
for the local variables:

For any local variable for which the bit vector
(constructed above) indicates that the subroutine has
accessed or modified, use the type of the local variable at the
time of the ret.

For other local variables, use the type of the local variable

before the jsr instruction.
4.10 Limitations of the Java Virtual Machine and Class File
Format

The following limitations in the Java Virtual Machine are
imposed by this version of the Java Virtual Machine speci-
fication:

The per-class constant pool is limited to 65535 entries by
the 16-bit constant_pool_count field of the ClassFile
structure (§4.1). This acts as an internal limit on the
total complexity of a single class.

The amount of code per method is limited to 65535 bytes
by the sizes of the indices in the exception__table of the
Code attribute (§4.7.4), in the LineNumberTable
attribute (§4.7.6), and in the LocalVariableTable
attribute (§4.7.7).

The number of local variables in a method is limited to
65535 by the two-byte index operand of many Java
Virtual Machine instructions and the size of the max__
locals item of the ClassFile structure (§4.1). (Recall
that values of type long and double are considered to
occupy two local variables.)

The number of fields of a class is limited to 65535 by the
size of the fields_ count item of the ClassFile structure
(84.1).

The number of methods of a class is limited to 65535 by
the size of the methods_ count item of the ClassFile
structure (§4.1).

The size of an operand stack is limited to 65535 words by
the max_stack field of the Code attribute structure
(84.7.4).

The number of dimensions in an array is limited to 255 by
the size of the dimensions opcode of the mulitianewar-
ray instruction, and by the constraints imposed on the
multianewarray, anewarray, and newarray instructions
by §4.8.2.

Avalid Java method descriptor (§4.3.3) must require 255
or fewer words of method arguments, where that limit
includes the word for this in the case of instance
method invocations. Note that the limit is on the
number of words of method arguments, and not on
number of arguments themselves. Arguments of type
long and double are two words long; arguments of all
other types are one word long.

10

15

20

25

30

35

40

50

55

60

65

44
CHAPTER 5

Constant Pool Resolution

Java classes and interfaces are dynamically loaded
(82.16.2), linked (§2.16.3), and initialized A(§2.16.4). Load-
ing is the process of finding the binary form of a class or
interface type with a particular name and constructing, from
that binary form, a Class object to represent the class or
interface. Linking is the process of taking a binary form of
a class or interface type and combining it into the runtime
state of the Java Virtual Machine so that it can be executed.
Initialization of a class consists of executing its static
initializers and the initializers for static fields declared in the
class.

The Java Virtual Machine performs most aspects of these
procedures through operations on a constant pool (§4.4), a
per-type runtime data structure that serves many of the
purposes of the symbol table of a conventional language. For
example, Java Virtual Machine instructions that might oth-
erwise have been designed to take immediate numeric or
string operands instead fetch their operands from the con-
stant pool. Classes, methods, and fields, whether referenced
from Java Virtual Machine instructions or from other con-
stant pool entries, are named using the constant pool.

A Java compiler does not presume to know the way in
which a Java Virtual Machine lays out classes, interfaces,
class instances, or arrays. References in the constant pool are
always initially symbolic. At run time, the symbolic repre-
sentation of the reference in the constant pool is used to
work out the actual location of the referenced entity. The
process of dynamically determining concrete values from
symbolic references in the constant pool is known as con-
stant pool resolution. Constant pool resolution may involve
loading one or more classes or interfaces, linking several
types, and initializing types. There are several kinds of
constant pool entries, and the details of resolution differ with
the kind of entry to be resolved.

Individual Java Virtual Machine instructions that refer-
ence entities in the constant pool are responsible for
resolving the entities they reference. Constant pool
entries that are referenced from other constant pool
entries are resolved when the referring entry is
resolved.

A given constant pool entry may be referred to from any
number of Java Virtual Machine instructions or other
constant pool entries; thus, constant pool resolution can
be attempted on a constant pool entry that is already
resolved. An attempt to resolve a constant pool entry
that has already been successfully resolved always
succeeds trivially, and always results in the same entity
produced by the initial resolution of that entry.

Constant pool resolution is normally initiated by the
execution of a Java Virtual Machine instruction that
references the constant pool. Rather than give the full
description of the resolution process performed by Java
Virtual Machine instructions in their individual
descriptions, we will use this chapter to summarize the
constant pool resolution process. We will specify the
errors that must be detected when resolving each kind
of constant pool entry, the order in which those errors
must be responded to, and the errors thrown in
response.

When referenced from the context of certain Java Virtual
Machine instructions, additional constraints are put on
linking operations. For instance, the getfield instruction
requires not only that the constant pool entry for the

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page76 of 161

5,966,702

45

field it references can be successfully resolved, but also
that the resolved field is not a class (static) field. If it is
a class field, an exception must be thrown. Linking
exceptions that are specific to the execution of a
particular Java Virtual Machine instruction are given in
the description of that instruction and are not covered
in this general discussion of constant pool resolution.
Note that such exceptions, although described as part of
the execution of Java Virtual Machine instructions
rather than constant pool resolution, are still properly
considered failure of the linking phase of Java Virtual
Machine execution.

The Java Virtual Machine specification documents and
orders all exceptions that can arise as a result of constant
pool resolution. It does not mandate how they should be
detected, only that they must be. In addition, as mentioned
in §6.3, any of the virtual machine errors listed as subclasses
of VirtualMachineError may be thrown at any time during
constant pool resolution.

5.1 Class and Interface Resolution

A constant pool entry tagged as CONSTANT_Class
(§4.4.1) represents a class or interface. Various Java Virtual
Machine instructions reference CONSTANT__Class entries
in the constant pool of the class that is current upon their
execution (§3.6). Several other kinds of constant pool entries
(§4.4.2) reference CONSTANT Class entries and cause
those class or interface references to be resolved when the
referencing entries are resolved. For instance, before a
method reference (a CONSTANT__Methodref constant pool
entry) can be resolved, the reference it makes to the class of
the method (via the class_index item of the constant pool
entry) must first be resolved.

If a class or interface has not been resolved already, the
details of the resolution process depend on what kind of
entity is represented by the CONSTANT _ Class entry being
resolved. Array classes are handled differently from non-
array classes and from interfaces. Details of the resolution
process also depend on whether the reference prompting the
resolution of this class or interface is from a class or
interface that was loaded using a class loader (§2.16.2).

The name_index item of a CONSTANT Class constant
pool entry is a reference to a CONSTANT__Utf8 constant
pool entry (§4.4.7) for a UTF-8 string that represents the
fully qualified name (§2.7.9) of the class or interface to be
resolved. What kind of entity is represented by a
CONSTANT _ Class constant pool entry, and how to resolve
that entry, is determined as follows:

If the first character of the fully qualified name of the
constant pool entry to be resolved is not a left bracket
(“[), then the entry is a reference to a non-array class
or to an interface.

If the current class (§3.6) has not been loaded by a class
loader, then “normal” class resolution is used (§5.1.1).

If the current class has been loaded by a class loader, then
application-defined code is used (§5.1.2) to resolve the
class.

If the first character of the fully qualified name of the
constant pool entry to be resolved is a left bracket (“[),
then the entry is a reference to an array class. Array
classes are resolved specially (§5.1.3).

5.1.1 Current Class or Interface Not Loaded by a Class
Loader

If a class or interface that has been loaded, and that was
not loaded using a class loader, references a non-array class
or interface C, then the following steps are performed to
resolve the reference to C:

1. The class or interface C and its superclasses are first

loaded (§2.16.2).

10

15

20

25

30

35

40

45

50

55

60

65

46

2. If class or interface C has not been loaded yet, the Java
Virtual Machine will search for a file C.class and
attempt to load class or interface C from that file. Note
that there is no guarantee that the file C.class will
actually contain the class or interface C, or that the file
C.class is even a valid class file. It is also possible that
class or interface C might have already been loaded, but
not yet initialized. This phase of loading must detect the
following errors:

If no file with the appropriate name can be found and
read, class or interface resolution throws a NoClass-
DefFoundError.

Otherwise, if it is determined that the selected file is not
a well-forned class file (pass 1 of §4.9.1), or is not a
class file of a supported major or minor version
(§4.1, class or interface resolution throws a NoClass-
DefFoundError.

Otherwise, if the selected class file did not actually
contain the desired class or interface, class or inter-
face resolution throws a NoClassDefFoundError.

Otherwise, if the selected class file does not specify a
superclass and is not the class file for class Object,
class or interface resolution throws a ClassFormat-
Error.

3. If the superclass of the class being loaded has not yet
been loaded, it is loaded using this step 1 recursively.
Loading a superclass must detect any of the errors in
step 1la, where this superclass is considered to be the
class being loaded. Note that all interfaces must have
java. lang. Object as their superclass, which must
already have been loaded.

4. If loading class C and its superclasses was successful,
the superclass (and thus its superclasses, if any) of class
C is linked and initialized by applying steps -2—4
recursively.

5. The class C is linked (§2.16.3), that is, it is verified
(84.9) and prepared.

6. First, the class or interface C is verified to ensure that
its binary representation is structurally valid (passes 2
and 3 of §4.9.1)." Verification may itself cause classes
and interfaces to be loaded, but not initialized (to avoid
circularity), using the procedure in step 1.

*Sun’s JDK release 1.0.2 only verifies class files that have class loaders; it
assumes that class files loaded locally are trusted and do not need verification.
If the class or interface C contained in class file C.class
does not satisty the static or structural constraints on
valid class files listed in Section 4.8, “Constraints on
Java Virtual Machine Code,” class or interface reso-

lution throws a VerifyError.

7. If the class file for class or interface C is successfully
verified, the class or interface is prepared. Preparation
involves creating the static fields for the class or
interface and initializing those fields to their standard
default values (§2.5.1). Preparation should not be con-
fused with the execution of static initializers (§2.11);
unlike execution of static initializers, preparation does
not require the execution of any Java code. During
preparation:

If a class that is not declared abstract has an abstract
method, class resolution throws an AbstractMeth-
odError.

8. Certain checks that are specific to individual Java
Virtual Machine instructions, but that are logically
related to this phase of constant pool resolution, are
described in the documentation of those instructions.
For instance, the getfield instruction resolves its field
reference, and only afterward checks to see whether
that field is an instance field (that is, it is not static).
Such exceptions are still considered and documented to
be linking, not runtime, exceptions.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page77 of 161

5,966,702

47

9. Next, the class is initialized. Details of the initialization
procedure are given in §2.16.5 and in The Java Lan-
guage Specification.

If an initializer completes abruptly by throwing some
exception E, and if the class of E is not Error or one
of its subclasses, then a new instance of the class
ExceptionlnlnitializerError, with E as the argument,
is created and used in place of E.

If the Java Virtual Machine attempts to create a new
instance of the class ExceptionlnlnitializerError but
is unable to do so because an Out-Of--Memory-Error
occurs, then the OutofMemoryError object is thrown
instead.

10. Finally, access permissions to the class being resolved
are checked:

If the current class or interface does not have permis-
sion to access the class or interface being resolved,
class or interface resolution throws an Illegal-
Access-Error. This condition can occur, for example,
if a class that is originally declared public is changed
to be private after another class that refers to the class
has been compiled.

If none of the preceding errors were detected, constant
pool resolution of the class or interface reference must have
completed successfully. However, if an error was detected,
one of the following must be true.

If some exception is thrown in steps 1-4, the class being

resolved must have been marked as unusable or must

have been discarded.

If an exception is thrown in step 5, the class being

resolved is still valid and usable.

In either case, the resolution fails, and the class or
interface attempting to perform the resolution is prohibited
from accessing the referenced class or interface.

5.1.2 Current Class or Interface Loaded by a Class Loader

If a class or interface, loaded using a class loader, refer-
ences a non-array class or interface C, then that same class
loader is used to load C. The loadClass method of that class
loader is invoked on the fully qualified path name (§2.7.9)
of the class to be resolved. The value returned by the
loadClass method is the resolved class. The remainder of the
section describes this process in more detail.

Every class loader is an instance of a subclass of the
abstract class ClassLoader. Applications implement sub-
classes of ClassLoader in order to extend the manner in
which the Java Virtual Machine dynamically loads classes.
Class loaders can be used to create classes that originate
from sources other than files. For example, a class could be
downloaded across a network, it could be generated on the
fly, or it could be decrypted from a scrambled file.

The Java Virtual Machine invokes the loadClass method
of a class loader in order to cause it to load (and optionally
link and initialize) a class. The first argument to loadclass is
the fully qualified name of the class to be loaded. The second
argument is a boolean. The value false indicates that the
specified class must be loaded, but not linked or initialized;
the value true indicates the class must be loaded, linked, and
initialized.

Implementations of class loaders are required to keep

track of which classes they have already loaded, linked, and
initialized:*
“Future implementations may change the API between the Java Virtual
Machine and the class ClassLoader. Specifically, the Java Virtual Machine
rather than the class loader will keep track of which classes and interfaces
have been loaded by a particular class loader. One possibility is that the
loadClass method will be called with a single argument indicating the class
or interface to be loaded. The virtual machine will handle the details of linking
and initialization and ensure that the class loader is not invoked with the same
class or interface name multiple times.

If a class loader is asked to load (but not link or initialize)

a class or interface that it has already loaded (and

10

20

25

30

35

40

45

50

55

60

65

48

possibly already linked and initialized), then it should
simply return that class or interface.

If a class loader is asked to load, link, and initialize a class
or interface that it has already loaded but not yet linked
and initialized, the class loader should not reload the
class or interface, but should only link and initialize it.

If a class loader is asked to load, link, and initialize a class
or interface that it has already loaded, linked, and
initialized, the class loader should simply return that
class or interface.

When the class loader’s loadClass method is invoked with
the name of a class or interface that it has not yet loaded, the
class loader must perform one of the following two opera-
tions in order to load the class or interface:

The class loader can create an array of bytes representing
the bytes of a file of class file format; it then must
invoke the method defineClass of class ClassLoader on
those bytes to convert them into a class or interface
with this class loader as the class loader for the newly
defined class. Invoking define-Class causes the Java
Virtual Machine to perform step 1la of §5.1.1.

Invoking defineClass then causes the loadClass method of
the class loader to be invoked recursively in order to
load the superclass of the newly defined class or
interface. The fully qualified path name of the super-
class is derived from the super_ class item in the class
file format. When the superclass is loaded in, the
second argument to loadClass is false, indicating that
the superclass is not to be linked and initialized imme-
diately.

The class loader can also invoke the static method find-
SystemClass in class ClassLoader with the fully quali-
fied name of the class or interface to be loaded.
Invoking this method causes the Java Virtual Machine
to perform step 1 of §5.1.1. The resulting class file is
not marked as having been loaded by a class loader.

After the class or interface and its superclasses have been
loaded successfully, if the second argument to loadClass is
true the class or interface is linked and initialized. This
second argument is always true if the class loader is being
called upon to resolve an entry in the constant pool of a class
or interface. The class loader links and initializes a class or
interface by invoking the method resolveClass in the class
ClassLoader. Linking and initializing a class or interface
created by a class loader is very similar to linking and
initializing a class or interface without a class loader (steps
2-4 of 5.1.1):

First, the superclass of the class or interface is linked and
initialized by calling the loadClass method of the class
loader with the fully qualified name of the superclass as the
first argument, and true as the second argument. Linking and
initialization may result in the superclass’s own superclass
being linked and initialized. Linking and initialization of a
superclass must detect any of the errors of step 3 of §5.1.1.

Next, the bytecode verifier is run on the class or interface
being linked and initialized. The verifier may itself need
classes or interfaces to be loaded, and if so, it loads them by
invoking the loadclass method of the same class loader with
the second argument being false. Since verification may
itself cause classes or interfaces to be loaded (but not linked
or initialized, to avoid circularity), it must detect the errors
of step 1 of §5.1.1. for any classes or interfaces it attempts
to load. Running the verifier may also cause the errors of
step 3a of §5.1.1.

If the class file is successfully verified, the class or
interface is then prepared (step 3b of §5.1.1) and initialized
(step 4 of §5.1.1).

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page78 of 161

5,966,702

49

Finally, access permissions to the class or interface are
checked (step 5 of §5.1.1). If the current class or interface
does not have permission to access the class being resolved,
class resolution throws an IllegalAccessError exception.

If none of the preceding errors were detected, loading,
linking, and initialization of the class or interface must have
completed successfully.

5.1.3 Array Classes

A constant pool entry tagged as CONSTANT Class
(§4.4.1) represents an array class if the first character of the
UTF-8 string (§4.4.7) referenced by the name__index item of
that constant pool entry is a left bracket (“[”). The number
of initial consecutive left brackets in the name represents the
number of dimensions of the array class. Following the one
or more initial consecutive left brackets is a field descriptor
(§4.3.2) representing either a primitive type or a non-array
reference type; this field descriptor represents the base type
of the array class.

The following steps are performed to resolve an array
class referenced from the constant pool of a class or inter-
face:

1. Determine the number of dimensions of the array class
and the field descriptor that represents the base type of
the array class.

2. Determine the base type of the array class:

If the field descriptor represents a primitive type (its
first character is not “L”), that primitive type is the
base type of the array class.

If the field descriptor represents a non-array reference
type (its first character is “L”), that reference type is
the base type of the array class. The reference type is
itself resolved using the procedures indicated above
in §5.1.1 or in §5.1.2.

1. If an array class representing the same base type and the
same number of dimensions has already been created,
the result of the resolution is that array class.
Otherwise, a new array class representing the indicated
base type and number of dimensions is created.

5.2 Field and Method Resolution

A constant pool entry tagged as CONSTANT _ Fieldref
(§4.4.2) represents a class or instance variable (§2.9) or a
(constant) field of an interface (§2.13.4). Note that interfaces
do not have instance variables. A constant pool entry tagged
as CONSTANT _Methodref (§4.4.2) represents a method of
a class (a static method) or of a class instance (an instance
method). References to interface methods are made using
CONSTANT InterfaceMethodref constant pool entries;
resolution of such entries is described in §5.3.

To resolve a field reference or a method reference, the
CONSTANT__Class (§4.4.1) entry representing the class of
which the field or method is a member must first be
successfully resolved (§5.1) Thus, any exception that can be
thrown when resolving a CONSTANT _ Class constant pool
entry can also be thrown as a result of resolving a
CONSTANT _ Fieldref or CONSTANT _Methodref entry. If
the CONSTANT Class entry representing the class or
interface can be successfully resolved, exceptions relating to
the linking of the method or field itself can be thrown. When
resolving a field reference:

If the referenced field does not exist in the specified class

or interface, field resolution throws a NoSuchFieldEr-
ror.

Otherwise, if the current class does not have permission
to access the referenced field, field resolution throws an
Ilegal AccessError exception.

If resolving a method:

10

15

20

25

30

35

40

45

50

55

60

65

50

If the referenced method does not exist in the specified
class or interface, field resolution throws a NoSuch-
MethodError.

Otherwise, if the current class does not have permission
to access the method being resolved, method resolution
throws an IllegalAccessError exception.

5.3 Interface Method Resolution

A constant pool entry tagged as CONSTANT__
InterfaceMethodref (§4.4.2) represents a call to an instance
method declared by an interface. Such a constant pool entry
is resolved by converting it into a machine-dependent inter-
nal format. No error or exception is possible except for those
documented in §6.3.

5.4 String Resolution

A constant pool entry tagged as CONSTANT _String
(84.4.3) represents an instance of a string literal (§2.3), that
is, a literal of the built-in type java.lang.String. The Unicode
characters (§2.1) of the string literal represented by the
CONSTANT _ String entry are found in the CONSTANT
Utf8 (§4.4.7) constant pool entry that the CONSTANT__
String entry references.

The Java language requires that identical string literals
(that is, literals that contain the same sequence of Unicode
characters) must reference the same instance of class String.
In addition, if the method intern is called on any string, the
result is a reference to the same class instance that would be
returned if that string appeared as a literal. Thus,

(“a” + “b” + “c”).intern() == “abc”

must have the value true.’

3String literal resolution is not implemented correctly in Sun’s JDK release
1.0.2. In that implementation of the Java Virtual Machine, resolving a
CONSTANT__String in the constant pool always allocates a new string. Two
string literals in two different classes, even if they contained the identical
sequence of characters, would never be == to each other. A string literal could
never be == to a result of the intern method.

To resolve a constant pool entry tagged CONSTANT
String, the Java Virtual Machine examines the series of
Unicode characters represented by the UTF-8 string that the
CONSTANT _ String entry references.

If another constant pool entry tagged CONSTANT
String and representing the identical sequence of Uni-
code characters has already been resolved, then the
result of resolution is a reference to the instance of class
String created for that earlier constant pool entry.

Otherwise, if the method intern has previously been called
on an instance of class String containing a sequence of
Unicode characters identical to that represented by the
constant pool entry, then the result of resolution is a
reference to that same instance of class String.

Otherwise, a new instance of class String is created
containing the sequence of Unicode characters repre-
sented by the CONSTANT_ String entry; that class
instance is the result of resolution.

No error or exception is possible during string resolution

except for those documented in §6.3.
5.5 Resolution of Other Constant Pool Items

Constant pool entries that are tagged CONSTANT _
Integer or CONSTANT_ Float (§4.4.4), CONSTANT _
Long or CONSTANT_Double (§4.4.5) all have values that
are directly represented within the constant pool. Their
resolution cannot throw exceptions except for those docu-
mented in §6.3.

Constant pool entries that are tagged CONSTANT _
NameAndType (§4.4.6), and CONSTANT__Utf8 (§4.4.7)
are never resolved directly. They are only referenced directly
or indirectly by other constant pool entries.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page79 of 161

5,966,702

51

We claim:
1. A method of pre-processing class files comprising:

determining plurality of duplicated elements in a plurality
of class files;

forming a shared table comprising said plurality of dupli-
cated elements;

removing said duplicated elements from said plurality of
class files to obtain a plurality of reduced class files;
and

forming a multi-class file comprising said plurality of
reduced class files and said shared table.

2. The method of claim 1, further comprising:

computing an individual memory allocation requirement
for each of said plurality of reduced class files;

computing a total memory allocation requirement for said
plurality of class files from said individual memory
allocation requirement of each of said plurality of
reduced class files; and

storing said total memory allocation requirement in said
multi-class file.

3. The method of claim 2, further comprising:

reading said total memory allocation requirement from
said multi-class file;

allocating a portion of memory based on said total
memory allocation requirement; and

loading said reduced class files and said shared table into
said portion of memory.

4. The method of claim 3, further comprising:

accessing said shared table in said portion of memory to
obtain one or more elements not found in one or more
of said reduced class files.

5. The method of claim 1, wherein said step of determin-

ing a plurality of duplicated elements comprises:
determining one or more constants shared between two or
more class files.

6. The method of claim 5, wherein said step of forming a

shared table comprises:
forming a shared constant table comprising said one or
more constants shared between said two or more class
files.
7. A computer program product comprising:
a computer usable medium having computer readable
program code embodied therein for pre-processing
class files, said computer program product comprising:
computer readable program code configured to cause a
computer to determine a plurality of duplicated ele-
ments in a plurality of class files;

computer readable program code configured to cause a
computer to form a shared table comprising said
plurality of duplicated elements;

computer readable program code configured to cause a
computer to remove said duplicated elements from
said plurality of class files to obtain a plurality of
reduced class files; and

computer readable program code configured to cause a
computer to form a multi-class file comprising said
plurality of reduced class files and said shared table.

8. The computer program product of claim 7, further

comprising:

computer readable program code configured to cause a
computer to compute an individual memory allocation
requirement of each of said plurality of reduced class
files;

computer readable program code configured to cause a
computer to compute a total memory allocation

15

20

25

30

35

40

45

50

55

60

65

52

requirement of said plurality of class files from said
individual memory allocation requirement of each of
said plurality of reduced class files; and

computer readable program code configured to cause a
computer to store said total memory allocation require-
ment in said multi-class file.

9. The computer program product of claim 8, further

comprising:

computer readable program code configured to cause a
computer to read said total memory allocation require-
ment from said multi-class file;

computer readable program code configured to cause a
computer to allocate a portion of memory based on said
total memory allocation requirement; and

computer readable program code configured to cause a
computer to load said reduced class files and said
shared table into said portion of memory.

10. The computer program product of claim 9, further

comprising:

computer readable program code configured to cause a
computer to access said shared table in said portion of
memory to obtain one or more elements not found in
one or more of said reduced class files.

11. The computer program product of claim 7, wherein

said computer readable program code configured to cause a
computer to determine said plurality of duplicated elements
comprises:

computer readable program code configured to cause a
computer to determine one or more constants shared
between two or more class files.

12. The computer program product of claim 11, wherein

said computer readable program code configured to cause a
computer to form said shared table comprises:

computer readable program code configured to cause a
computer to form a shared constant table comprising
said one or more constants shared between said two or
more class files.

13. An apparatus comprising:

a Processor;

a memory coupled to said processor;

a plurality of class files stored in said memory;

a process executing on said processor, said process con-
figured to form a multi-class file comprising:

a plurality of reduced class files obtained from said
plurality of class files by removing one or more
elements that are duplicated between two or more of
said plurality of class files; and

a shared table comprising said duplicated elements.

14. The apparatus of claim 13, wherein said multi-class

file further comprises a memory requirement, said memory
requirement being computed by said process.

15. The apparatus of claim 13, wherein said duplicated

elements comprise elements of constant pools of respective
class files, said shared table comprising a shared constant
pool.

16. The apparatus of claim 13, further comprising:

a virtual machine having a class loader and a runtime data
area, said class loader configured to obtain and load
said multi-class file into said runtime data area.

17. The apparatus of claim 16, wherein said class loader

is configured to allocate a portion of said runtime data area
based on said memory requirement in said multi-class file.

18. The apparatus of claim 17, wherein said class loader

is configured to load said plurality of reduced class files and
said shared table into said portion of said runtime data area.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page80 of 161

5,966,702

53

19. The apparatus of claim 16, wherein said virtual
machine is configured to access said shared table when a
desired element associated with a first class file is not present
in a corresponding one of said plurality of reduced class
files.

20. A memory configured to store data for access by a
virtual machine executing in a computer system, compris-
ing:

a data structure stored in said memory, said data structure

comprising:

a plurality of reduced class files associated with a
plurality of corresponding classes, said plurality of
reduced class files configured to be loaded by the
virtual machine for execution of said plurality of
classes;

a shared table comprising one or more elements that are
duplicated between two or more of said plurality of
classes, said shared table configured to be loaded

10

15

54

into the virtual machine to be accessed for said
duplicated elements; and

a memory requirement value configured to be read by
a class loader of the virtual machine to allocate a
portion of a runtime data area for loading said
plurality of reduced class files and said shared table.

21. The memory of claim 20, wherein said duplicated
elements are removed from said plurality of reduced class
files.

22. The memory of claim 20, wherein said duplicated
elements comprise constants and said shared table comprises
a shared constant pool.

23. The memory of claim 20, wherein said memory
requirement value is computed from individual memory
requirements of said plurality of reduced class files and a
memory requirement of said shared table.

#* #* #* #* #*

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page81 of 161

EXHIBIT D

A || g

a2 United States Patent

Fresko

US007426720B1

US 7,426,720 B1
*Sep. 16, 2008

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)
(1)
(52)

(58)

(56)

SYSTEM AND METHOD FOR DYNAMIC
PRELOADING OF CLASSES THROUGH
MEMORY SPACE CLONING OF A MASTER
RUNTIME SYSTEM PROCESS

Inventor: Nedim Fresko, San Francisco, CA (US)

Assignee: Sun Microsystems, Inc., Santa Clara,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 745 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 10/745,023

Filed: Dec. 22,2003

Int. CL.

GO6F 9/45 (2006.01)

US.CL ... 717/140, 717/151; 717/152;

717/153;718/1

717/151-153,
717/140; 718/1
See application file for complete search history.

Field of Classification Search

References Cited

U.S. PATENT DOCUMENTS

6,823,509 B2* 11/2004 Webbccoovviiinininnnn. 718/1
6,829,761 B1* 12/2004 Sextonetal. 717/165
2003/0088604 Al* 5/2003 Kucketal.cccoonns 709/1

* cited by examiner

Primary Examiner—WeiY. Zhen

Assistant Examiner—Junchun Wu

(74) Attorney, Agent, or Firm—Park, Vaughan & Fleming
LLP

(57) ABSTRACT

A system and method for dynamic preloading of classes
through memory space cloning of a master runtime system
process is presented. A master runtime system process is
executed. A representation of at least one class is obtained
from a source definition provided as object-oriented program
code. The representation is interpreted and instantiated as a
class definition in a memory space of the master runtime
system process. The memory space is cloned as a child runt-
ime system process responsive to a process request and the
child runtime system process is executed, inheriting the
memory state of the parent, which reflects the data structures
and state corresponding to the preloaded classes.

6,374,286 B1* 4/2002 Geeetal.c.coovvuene.... 718/108 22 Claims, 11 Drawing Sheets
0 35
/’5\ 31
v S.
ot Runtime
| orage Environment
] Application 38
. Manager ~T 32
A
Classes (- Master VM | |
N A Process icati
q Applications
L (— N Launched
N ¥ | Prewarmed | |
:L‘ = State M-T 41
L4
37 Class Libs { Cloned JVM
q Process T 34
~
N Inherited
Prewarmed |- 42
System App State
40 | Class A
Loader |V
Bootstrap
Class A
39 7 Loader |¥

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page83 of 161

U.S. Patent Sep. 16, 2008 Sheet 1 of 11 US 7,426,720 B1

(@]
N

19

Storage
Class
Libraries

. | oooo]
oo |- |{loooco0
t ||[eooo
bt [2¢]
5 oo § o
S
w Tl oS
—
o] 22
X
[
o []
5 -
c
(4] = L]
- 2 (@]
— »
(32
< <
S T
o }
N
€ w
2| -
E) o

STB m
D
26

1

1
15 \
~16
17

Storage
Classes
Class
Libraries

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page84 of 161

U.S. Patent Sep. 16, 2008 Sheet 2 of 11 US 7,426,720 B1

30 35
//"’_—:i___§§\\\ 31
~ Runtime
1 Storage Environment
Application A 32 38
Manager
36< Classes \::1 Master JVM A 33
{ Process o .| Applications
U ! —/ Launched
I Prewarmed
— State (N 41
| 4
37< Class Libs { Cloned JVM
Process _T 34
~
N Inherited
Prewarmed \LT 42
System App State
40 —~+_ Class (1
Loader N
Bootstrap
39 Class

-

Loader

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page85 of 161

U.S. Patent Sep. 16, 2008 Sheet 3 of 11 US 7,426,720 B1
Fig. 3.
60
Memory
62 A
>64d
Page Table
61 N

<=

}640
~~ 33
Master 7
JVM » 63
Process AT, /\/
R 64b

>64a

0x0000

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page86 of 161

U.S. Patent Sep. 16, 2008 Sheet 4 of 11 US 7,426,720 B1
Fig. 4.
70
Memory
62
Yo
Page Table 2
61 N
Cloned 34 //\\;
JVM YA 71
Process A OINY _~ 72b
64c
. 33 ARy i?Za
Master
JVM e 63
Process PAAAA SIS, 5
22 "\ 64b
>64a
0x0000

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page87 of 161

U.S. Patent Sep. 16, 2008 Sheet 5 of 11 US 7,426,720 B1

Fig. 5A.

80
Memory
62 N
>82d
Page Table
61 N
N\ 34 /\/
Cloned A A A
JVM AT 81
WA
Process AIAAIAAIY,
>82¢c
~ 33
Master /\/
JVM V. 63
Process VT
N } 82b
>82a
0x0000

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page88 of 161

U.S. Patent Sep. 16, 2008 Sheet 6 of 11 US 7,426,720 B1
Fig. 5B.
90
Memory
62
""""""""""" >82d
Page Table T
61 N
. 34 /\/
Cloned /\
JVM 4 81
Process IS APAAINL,
> 82¢
N 33
Master /\/
JVM . 63 /\/
Process AL LIAIAIIL, %
>82b
>82a
0x0000

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page89 of 161

U.S. Patent Sep. 16, 2008 Sheet 7 of 11 US 7,426,720 B1

Fig. 6.

100 1 Start)

A

101« Load application manager

\ 4

Load master
1021 JVM process
v
103 N Sleep

104 Request?

105 N Wake up

v

106 . Check net connection 1D

v

107 <~ Determine request type

108 No
Yes
Clone child
1091 JVM process

Case4:10-cv-03561-LB Documentl Filed08/12/10
U.S. Patent Sep. 16, 2008 Sheet 8 of 11

Load Master
JVM Process

Fig. 7.

120

Page90 of 161

US 7,426,720 B1

Execute master
1214 JVM process
A 4
122 AN Preload Classes
A
123 AN Complete warmup
Return
Fig. 8.
130
Clone Process
(without COW)
Copy memory space of
1314 master JVM process
132 A Perform resource
management
A 4
Execute child
13317 JVM process

134

No

Completed?

Yes

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page9l of 161

U.S. Patent Sep. 16, 2008 Sheet 9 of 11 US 7,426,720 B1
Fig. 9.
140
Clone Process
(with COW)
Copy references to
141 <~ memory space of master
JVM process
142 A Perform resource
management
y
Execute child
1431 JVM process
145 146
Q 144 C
Copy memory Yes No Use master
segment JVM copy
147
No

Completed?

Yes

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page92 of 161

U.S. Patent

Sep. 16, 2008 Sheet 10 of 11

Preload
Classes

Invoke bootstrap and system
application class loaders

v

152 \j For each class, do \

Look up class in system
class dictionary

151 N

153 "

154
Yes

Found?

No

165 Attempt to locate class

156

Load bytes for class
157 <~ from source associated
with class loader

158
No

Yes

Create instance of class and

160 1 install in local code cache

h 4

®

US 7,426,720 B1

159

S

Throw class not found
exception

®

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page93 of 161

U.S. Patent Sep. 16, 2008 Sheet 11 of 11 US 7,426,720 B1

Fig. 10 (Cont.).

No

Resolve?

162 N Resolve class

-
Rl

A

163 ‘x Next /* class */ /
y
‘ Return)

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page94 of 161

US 7,426,720 B1

1

SYSTEM AND METHOD FOR DYNAMIC
PRELOADING OF CLASSES THROUGH
MEMORY SPACE CLONING OF A MASTER
RUNTIME SYSTEM PROCESS

FIELD OF THE INVENTION

The invention relates in general to class preloading and, in
particular, to a system and method for dynamic preloading of
classes through memory space cloning of a master runtime
system process.

BACKGROUND OF THE INVENTION

Recent advances in microprocessor design and component
integration have enabled a wide range of devices to offer
increasingly complex functionality and “soft” features. Soft
features include software applications that enhance and cus-
tomize the operation of a device. These devices include stan-
dard computing devices, such as desktop and laptop comput-
ers, portable computing devices, such as personal data
assistants, and consumer devices, such as cellular telephones,
messaging pagers, gaming consoles, and set top boxes. Most
devices now include an operating system to support the soft
features and other extensions.

The increased capabilities offered by these software-up-
gradeable devices have also created certain user expectations.
Often, users are not technically savvy and are intolerant of
performance compromises occasioned by architectural chal-
lenges, such as slow or inconsistent application performance.
Similarly, users generally expect to be able to access a host of
separate applications, which are implemented at the system
level through multitasking. For users, widely available soft-
ware applications assure a positive experience through con-
sistency and increased exposure across multiple platforms.
However, for software developers, engineering software
applications for disparate computing platforms entails
increased development costs and on-going support and
upgrade commitments for each supported architecture.

Managed code platforms provide one solution to software
developers seeking to support multiple platforms by present-
ing a machine-independent and architecture-neutral operat-
ing environment. Managed code platforms include program-
ming language compilers and interpreters executed by an
operating system as user applications, but which provide
virtual runtime environments within which compatible appli-
cations can operate. For instance, applications written in the
Java programming language, when combined with a Java
virtual machine (JVM) runtime environment, can operate on
heterogeneous computer systems independent of machine-
specific environment and configuration settings. An overview
of the Java programming language is described in P. van der
Linden, “Just Java,” Ch. 1, Sun Microsystems, Inc. (2d ed.
1997), the disclosure of which is incorporated by reference.
JVMs are a critical component to the overall Java operating
environment, which can be ported to the full range of com-
putational devices, including memory-constrained consumer
devices.

Managed code platforms are generally designed for the
monotonic execution of a single application instance. Mul-
tiple instances of a managed code platform are executed to
simulate multitasking behavior. Such forced concurrency,
however, creates several performance problems. First, each
instance incurs a startup transient. Executable and startup
data must be read from slow persistent storage, which results
in slow initial application performance. Similarly, memory is
not shared between instances and each additional instance

20

25

30

35

40

45

50

55

60

65

2

increases the overall memory footprint of the platform by
separately loading and instantiating classes, generally prob-
lematic in memory-constrained systems. Moreover, data
dependencies and deferred initialization of system state can
result in non-deterministic execution patterns. Finally, each
instance independently determines the relative importance of
executing methods and compiles machine code on an ad hoc
basis, often causing inconsistent application performance.

Deferred class loading is sometimes necessitated by the
dynamic nature of the object oriented languages involved.
Dynamic class loading can also adversely affect performance
and cause nondeterministic execution behavior. To help
improve runtime performance, managed code platforms
lazily defer class loading until a class is actually referenced.
Deferred class loading conserves the time required to load a
class by delaying class loading and compilation until, and if,
the class is actually needed. Deferred class loading sacrifices
runtime performance for improved application startup. How-
ever, for near real time applications, deferred class loading
causes non-deterministic execution behavior that increases
worst case performance by the longest class loading execu-
tion thread. Similarly, deferred class loading exacerbates the
resource usage of multiple application instances that each
requires the same classes by duplicatively performing iden-
tical operations and needlessly consuming memory that could
be conserved, if the memory state were shared.

Static preloading of classes and interfaces is currently sup-
ported in many Java virtual machines, which allows a build-
time tool to pre-process and preload classes and to link the
classes into the JVM static executable image before JVM
startup. However, static preloading can result in large execut-
able sizes and can be problematic for resource constrained
devices, where boot startup time is critical and a combination
of slower processor and persistent storage and modest
memory can cause significant boot times.

Therefore, there is a need for an approach to providing
class preloading in a managed code platform, such as the Java
operating environment, to provide concurrently executable
applications that share warmed up memory state and to mini-
mize worst case performance.

SUMMARY OF THE INVENTION

A managed code platform is executed in an application
framework that supports the spawning of multiple and inde-
pendent isolated user applications. Preferably, the application
framework supports the cloning of the memory space of each
user application using copy-on-write semantics. The man-
aged code platform includes a master runtime system process,
such as a virtual machine, to interpret machine-portable code
defining compatible applications. An application manager
also executes within the application framework and is com-
municatively interfaced to the master runtime system process
through an inter-process communication mechanism. The
application framework logically copies the master runtime
system process context upon request by the application
framework to create a child runtime system process through
process cloning. The context of the master runtime system
process stored in memory is inherited by the child runtime
system process as prewarmed state and cached code. When
implemented with copy-on-write semantics, the process
cloning creates a logical copy of references to the master
runtime system process context. Segments of the referenced
master runtime system process context are lazily copied only
upon an attempt by the child runtime system process to
modify the referenced context. During initialization, the mas-
ter runtime system process preloads classes and interfaces

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page95 of 161

US 7,426,720 B1

3

likely to be required by user applications at runtime. The
classes and interfaces are identified through profiling by rank-
ing a set of classes according to a predetermined criteria, such
as described in commonly-assigned U.S. patent application
Ser. No. 09/970,661, filed Oct. 5, 2001, pending, the disclo-
sure of which is incorporated by reference. An example of a
suitable managed code platform and runtime system process
are the Java operating environment and Java virtual machine
(JVM) architecture, as licensed by Sun Microsystems, Inc.,
Palo Alto, Calif.

One embodiment provides a system and method for
dynamic preloading of classes through memory space clon-
ing of a master runtime system process. A master runtime
system process is executed. A representation of at least one
class is obtained from a source definition provided as object-
oriented program code. The representation is interpreted and
instantiated as a class definition in a memory space of the
master runtime system process. The memory space is cloned
as a child runtime system process responsive to a process
request and the child runtime system process is executed.

The use of the process cloning mechanism provided by the
underlying application framework provides several benefits
in addition to resolving the need for efficient concurrent
application execution of machine portable code. The inherit-
ance of prewarmed state through the cloning of the master
runtime process context provides inter-process sharing of
preloaded classes. Similarly, each child runtime system pro-
cess executes in isolation of each other process, thereby pro-
viding strong resource control through the system level ser-
vices of' the application framework. Isolation, reliable process
invocation and termination, and resource reclamation are
available and cleanly provided at an operating system level. In
addition, process cloning provides fast user application ini-
tialization and deterministic runtime behavior, particularly
for environments providing process cloning with copy-on-
write semantics. Finally, for non-shareable segments of the
master runtime system process context, actual copying is
deferred until required through copy-on-write semantics,
which avoids impacting application performance until, and if,
the segment is required.

Still other embodiments of the invention will become
readily apparent to those skilled in the art from the following
detailed description, wherein are described embodiments of
the invention by way of illustrating the best mode contem-
plated for carrying out the invention. As will be realized, the
invention is capable of other and different embodiments and
its several details are capable of modifications in various
obvious respects, all without departing from the spirit and the
scope of the invention. Accordingly, the drawings and
detailed description are to be regarded as illustrative in nature
and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram showing, by way of
example, runtime environments implemented on a plurality
of heterogeneous devices.

FIG. 2 is a block diagram showing a system for dynamic
preloading of classes through memory space cloning of a
master runtime system process, in accordance with the inven-
tion.

FIG. 3 is a block diagram showing, by way of example, a
master JVM process mapped into memory.

FIG. 4 is a block diagram showing, by way of example, a
master JVM process and a cloned JVM process mapped into
memory through memory space cloning.

20

25

30

35

40

45

50

55

60

65

4

FIGS. 5A-B are block diagrams showing, by way of
example, a master JVM process and a cloned JVM process
mapped into memory through memory space cloning with
copy-on-write semantics.

FIG. 6 is a flow diagram showing a method for dynamic
preloading of classes through memory space cloning of a
master runtime system process, in accordance with the inven-
tion.

FIG. 7 is a flow diagram showing the routine for loading a
master JVM process for use in the method of FIG. 6.

FIG. 8 is a flow diagram showing the routine for cloning a
process without copy-on-write semantics for use in the
method of FIG. 6.

FIG. 9 is a flow diagram showing the routine for cloning a
process with copy-on-write semantics for use in the method
of FIG. 6.

FIG. 10 is a flow diagram showing the routine for preload-
ing a class for use in the routine of FIG. 7.

DETAILED DESCRIPTION

System Overview

FIG. 1 is a functional block diagram 10 showing, by way of
example, runtime environments (RTEs) 14, 22, 24, 26 imple-
mented on a plurality of heterogeneous devices 11. Each
heterogeneous device 11 provides a managed code platform,
such as the Java operating environment, executing in a runt-
ime environment 14, 22, 24, 26, as further described below
with reference to FIG. 2. The heterogeneous devices 11
include, nonexclusively, a client computer system 13, such as
a desktop or laptop computer system. Each client 13 is opera-
tively coupled to a storage device 15 and maintains a set of
classes 16 and class libraries 17, which respectively define
code modules that specify data structures and sets of methods
that operate on the data, and shareable collections of the
modules. The heterogeneous devices 11 also include portable
computing devices, including personal data assistants 21, and
consumer devices, such as cellular telephones 23 and set top
boxes (STB) 25. Finally, a server 18 is operatively coupled to
a storage device 19 in which globally shareable class libraries
20 are maintained. Each of the heterogeneous devices 11 can
interface via a network 12, which includes conventional hard-
wired and wireless network configurations. Other types of
heterogeneous devices 11 and various network configura-
tions, arrangements, and topologies are possible.

Each heterogeneous device 11 includes an operating sys-
tem to manage resources, provide access to peripheral
devices, allocate memory resources, and control program
execution and termination. Each operating system supports a
process cloning mechanism that spawns multiple and inde-
pendent isolated user applications by cloning the memory
space of specifiable processes. An example of a process clon-
ing mechanism suitable for use in the present invention is the
fork() system call provided by the Unix or Linux operating
systems, such as described in M. J. Bach, “The Design Of The
Unix Operating System,” Ch. 7, Bell Tele. Labs., Inc. (1986),
the disclosure of which is incorporated by reference. The
process invoking the fork() system call is known as the parent
process and the newly created process is called the child
process. The operating system assigns a separate process
identifier to the child process, which executes as a separate
process. The operating system also creates a logical copy of
the context of the parent process by copying the memory
space of the parent process into the memory space of the child
process. In a copy-on-write variant of the fork() system call,
the operating system only copies references to the memory

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page96 of 161

US 7,426,720 B1

5

space and defers actually copying individual memory space
segments until, and if; the child process attempts to modity
the referenced data of the parent process context. The copy-
on-write fork() system call is faster than the non-copy-on-
write fork() system call and implicitly shares any data not
written into between the parent and child processes.

System for Preloading Classes

FIG. 2 is ablock diagram 30 showing a system for dynamic
preloading of classes through memory space cloning of a
master runtime system process 33, in accordance with the
invention. Although described with specific reference to
classes, other forms of structured static data could also be
preloaded, including data structures, processes, functions,
subroutines, interfaces, and the like. The system consists of a
runtime environment 31 and individual classes 36 and class
libraries 37 that form the overall core managed code platform.
By way of example, the system is described with reference to
the Java operating environment, although other forms of man-
aged code platforms that execute applications preferably
written in an object oriented programming language, such as
the Java programming language, could also be used.

The exemplary runtime environment 31 includes an appli-
cation manager 32, master Java virtual machine (JVM) pro-
cess 33 and zero or more cloned JVM processes 34. The
master JVM process 33 and cloned JVM processes 34 respec-
tively correspond to a master runtime system process and
child runtime system processes. The master runtime system
process, preferably provided as a virtual machine, interprets
machine-portable code defining compatible applications. The
runtime environment 31 need not execute cloned JVM pro-
cesses 34, which are only invoked upon request by the appli-
cation manager 32.

The runtime environment 31 executes an application
framework that spawns multiple independent and isolated
user application process instances by preferably cloning the
memory space of a master runtime system process. The
example of an application framework suitable for use in the
present invention is the Unix operating system, such as
described generally in M. J. Bach, supra at Ch. 2, the disclo-
sure of which is incorporated by reference.

The application manager 32 presents a user interface
through which individual applications can be selected and
executed. The application manager 32 and master JVM pro-
cess 33 preferably communicate via an inter-process commu-
nication (IPC) mechanism, such as a pipe or a socket. The
master JVM process 33 is started at device boot time.

Upon initialization, the master JVM process 33 reads an
executable process image from the storage device 35 and
performs bootstrapping operations. These operations include
preloading the classes 36 and classes defined in the class
libraries 37, as further described below with reference to FIG.
10. Thus, upon completion of initialization, the memory
image of the master JVM process 33 resembles that of an
initialized, primed and warmed up JVM process with key
classes stored in the master JVM process context as pre-
warmed state 41. Preferably, the prewarmed state 41 is stored
as read only data.

Following the initialization, the master JVM process 33
idles, that is, “sleeps” in an inactive state, while awaiting
further instructions from the application manager 32. The
master JVM process 33 awakens in response to requests
received from the application manager 32 to execute applica-
tions. The application manager 32 sends a request to the
master JVM process 33, including standard command line
parameters, such as application name, class path, and appli-
cation arguments. The master JVM process 33 awakens and

20

25

30

35

40

45

50

55

60

65

6

creates a cloned JVM process 34 as a new cloned process
instance of the master JVM process 33 using the process
cloning mechanism of the underlying operating system. The
context of the master JVM process 33 stored in memory as
prewarmed state 41 is inherited by the cloned JVM process 34
as inherited prewarmed state 42, thereby saving initialization
and runtime execution times and providing deterministic
execution behavior. Following the “cloning” of the cloned
JVM process 34, the master JVM process 33 records the
launched application in an applications launched list 38 and
returns to an inactive sleep state.
When implemented with copy-on-write semantics, the
process cloning creates a logical copy of only the references
to the master JVM process context. Segments of the refer-
enced master JVM process context are lazily copied only
upon an attempt by the cloned JVM process to modify the
referenced context. Therefore, as long as the cloned JVM
process does not write into a memory segment, the segment
remains shared between parent and child processes.
The master JVM process 33 recognizes the following basic
commands received from the application manager 32 through
the IPC mechanism:
(1) list: Provides a list of applications launched in response
to requests received from the application manager 32.

(2) jexec: Invokes the process cloning mechanism, parses
command line arguments and executes a new instance of
the master JVM process 33 as the cloned JVM process
34. Preferably adopts a syntax compatible to standard
JVM processes.

(3) kill: Terminates the application identified by an appli-

cation handle or process identifier.

Other commands are possible, such as described in com-
monly-assigned U.S. patent application Ser. No. 10/745,164,
entitled “System And Method For Performing Incremental
Initialization Of A Master Runtime System Process,” filed 22
Dec. 2003, pending, the disclosure of which is incorporated
by reference.

During initialization, the master JVM process 33 also pre-
loads classes 36 and classes defined in the class libraries 37
that are likely to be required by applications at runtime. The
classes and interfaces are identified through profiling by rank-
ing a set of classes according to a predetermined criteria, such
as described in commonly-assigned U.S. patent application
Ser. No. 09/970,661, filed Oct. 5, 2001, pending, the disclo-
sure of which is incorporated by reference. A set of core Java
foundation classes is specified in a bootstrap class loader 39
and application classes in a system application class loader
40. Class loading requires identifying a binary form of a class
type as identified by specific name, as further described below
with reference to FIG. 10. Depending upon whether the class
was previously loaded or referenced, class loading can
include retrieving a binary representation from source and
constructing a class object to represent the class in memory.
The master JVM process 33 maintains an internal symbol
table (not shown) of classes previously loaded to resolve
symbolic references. If the internal symbol table does not
already contain an entry for the class name or class loader, the
class loader responsible for loading the class is identified,
invoked and given the name of the class.

The master JVM process 33 invokes the bootstrap class
loader 39 and system application class loader 40 for every
class likely to be requested by the applications. Thus, the
prewarmed state 41 includes the class loading for applications
prior to actual execution and the initialized and loaded classes
are inherited by each cloned JVM process 34 as the inherited
prewarmed state 42.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page97 of 161

US 7,426,720 B1

7

Master JVM Process Mapping

FIG. 3 is a block diagram 60 showing, by way of example,
amaster JVM process 33 mapped into memory 62. Generally,
the context for an executing process includes a data space,
user stack, kernel stack, and a user area that lists open files,
current directory and supervisory permission settings. Other
types of context can also be provided. The context is stored
and managed in the memory 62 by the operating system. At
device boot time, the operating system instantiates a repre-
sentation of the executable master JVM process 33 into the
memory 62, possibly in non-contiguous pages 64a-d, and
records the allocation of the memory space as page table
entries 63 into the page table 61 prior to commencing execu-
tion of the master JVM process 33. As well, the master JVM
process context could similarly be mapped using other
memory management systems, such as using demand paging,
swapping and similar process memory allocation schemes
compatible with process cloning, particularly process cloning
with copy-on-write semantics.

Cloned JVM Process Mapping

FIG. 4 is a block diagram 70 showing, by way of example,
a master JVM process 33 and a cloned JVM process 34
mapped into memory 62 through memory space cloning. In a
system with process cloning that does not provide copy-on-
write semantics, physical copies of the pages 64a-c in the
memory 62 storing the parent process context are created for
each child process. In response to a process cloning request,
the operating system instantiates a copy of the representation
of'the executable master JVM process 33 for the cloned JVM
process 34 into the memory 62, possibly in non-contiguous
pages 72a-d, and records the allocation of the memory space
as page table entries 71 into the page table 61 prior to com-
mencing execution of the cloned JVM process 34. Thus, the
cloned JVM process 34 is created with a physical copy of the
context of the master JVM process 33. Since a new, separate
physical copy of the master JVM process context is created,
the cloned JVM process 34 inherits the prewarmed state 41,
including the preloaded classes of the master JVM process
33. However, the overall memory footprint of the runtime
environment 31 is increased by the memory space required to
store the additional copy of the master JVM process context.

Cloned JVM Process Mapping with Copy-On-Write

FIGS. 5A-B are block diagrams 80, 90 showing, by way of
example, a master JVM process 33 and a cloned JVM process
34 mapped into memory 62 through memory space cloning
with copy-on-write semantics. In a system with process clon-
ing that provides copy-on-write semantics, only copies of the
references, typically page table entries, to the memory space
storing the parent process context are created for each child
process. Referring first to FIG. 5A, in response to a process
cloning request, the operating system copies only the page
table entries 63 referencing the memory space of the execut-
able master JVM process 33 as a new set of page table entries
81 for the cloned JVM process 34. Thus, the cloned JVM
process 34 uses the same references to the possibly non-
contiguous pages 64a-d storing the master JVM process con-
text as the master JVM process 34. Initialization and execu-
tion of the application associated with the cloned JVM
process 34 requires less time, as only the page table entries 62
are copied to clone the master JVM process context. Further-
more, until the cloned JVM process 34 attempts to modify the
master JVM process context, the memory space is treated as
read only data, which can be shared by other processes.

Referring next to FIG. 5B, the cloned JVM process 34 has
attempted to modify one of the pages 82¢ in the memory
space of the master JVM process context. In response, the

20

25

30

35

40

45

55

60

65

8

operating system creates a physical copy of the to-be-modi-
fied memory space page 82¢ as a new page 91 and updates the
allocation in the page table entries 81 for the cloned JVM
process 34. Through copy-on-write semantics, the overall
footprint of the runtime environment 31 is maintained as
small as possible and only grows until, and if, each cloned
JVM process 34 actually requires additional memory space
for application-specific context.

Method for Preloading Classes

FIG. 6 is a flow diagram, showing a method 100 for
dynamic preloading of classes through memory space clon-
ing of a master runtime system process, in accordance with
the invention. The method 100 is described as a sequence of
process operations or steps, which can be executed, for
instance, by the runtime environment 31 of FIG. 2 or other
components.

Initially, the application manager 32 is loaded (block 101).
The master JVM process 33 is loaded and initialized at device
boot time (block 102), as further described below with refer-
ence to FIG. 7. Following loading and initialization, the mas-
ter JVM process 33 enters an inactive sleep mode (block 103).
Upon receiving a request from the application manager 32
(block 104), the master JVM process 33 awakens (block 105).
If necessary, the master JVM process 33 checks the network
connection identifier (ID) (block 106) for the application
manager 32 and determines the type of request (block 107).
The master JVM process 33 recognizes the commands list,
jexec, and kill, as described above with reference to FIG. 2. If
the request type corresponds to a jexec request, instructing the
master JVM process 33 to initiate an execution of an appli-
cation through process cloning (block 108), a cloned JVM
process 34 is cloned and executed (block 109), as further
described below with reference to FIGS. 8 and 9. Processing
continues indefinitely until the master JVM process 33 and
the runtime environment 31 are terminated.

Routine for Loading Master JVM Process

FIG. 7 is a flow diagram showing the routine 120 for
loading a master JVM process 33 for use in the method 100 of
FIG. 6. One purpose of the routine is to invoke the master
JVM process 33 and to preload classes into the prewarmed
state 41 for inheritance by cloned JVM processes 34.

Initially, the master JVM process 33 begins execution at
device boot time (block 121). The master JVM process 33
then preloads classes as a part of the initialization process
(block 122), as further described below with reference to FIG.
10. Briefly, preloading classes involves executing the boot-
strap class loader 39 and system application class loader 40 to
create and resolve classes likely required by one or more of
the applications. The master JVM process 33 completes any
other warmup operations (block 123) and the routine returns.

Routine for Process Cloning without Copy-On-Write

FIG. 8 is a flow diagram showing the routine 130 for
cloning a process without copy-on-write for use in the method
100 of FIG. 6. One purpose of the routine is to create and
initiate execution of a cloned JVM process 34 through pro-
cess cloning that does not provide copy-on-write semantics.

Initially, the memory space containing the context of the
master JVM process 33 is physically copied into a new
memory space for the cloned JVM process 34 (block 131).
Optionally, the master JVM process 33 can set operating
system level resource management parameters over the
cloned JVM process 34 (block 132), including setting sched-
uling priorities and limiting processor and memory consump-
tion. Other types of resource management controls are pos-
sible. The cloned JVM process 34 is then executed by the

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page98 of 161

US 7,426,720 B1

9

runtime environment 31 (block 133) using the duplicated
master JVM process context. The routine returns upon the
completion (block 134) of the cloned JVM process 34.

Routine for Process Cloning with Copy-On-Write

FIG. 9 is a flow diagram showing the routine 140 for
cloning a process with copy-on-write for use in the method
100 of FIG. 6. One purpose of the routine is to create and
initiate execution of a cloned JVM process 34 through pro-
cess cloning that provides copy-on-write semantics.

Initially, references to the memory space containing the
context of the master JVM process 33 are copied for the
cloned JVM process 34 (block 141). Optionally, the master
JVM process 33 can set operating system level resource man-
agement parameters over the cloned JVM process 34 (block
142), including setting scheduling priorities and limiting pro-
cessor and memory consumption. Other types of resource
management controls are possible. The cloned JVM process
34 is then executed by the runtime environment 31 (block
143) using the referenced master JVM process context. Each
time the cloned JVM process 34 attempts to write into the
memory space referenced to the master JVM process context
(block 144), the operating system copies the applicable
memory segment (block 145). Otherwise, the cloned JVM
process 34 continues to use the referenced master JVM pro-
cess context (block 146), which is treated as read only data.
The routine returns upon the completion (block 147) of the
cloned JVM process 34.

Routine for Preloading Class

FIG. 10 is a flow diagram showing the routine 150 for
preloading a class 36 for use in the routine 120 of FIG. 7. One
purpose of the routine is to find and instantiate prewarmed
instances of classes 36 and classes defined in the class librar-
ies 37 as specified in the bootstrap class loader 39 and system
application class loader 40 as prewarmed state 41 in the
master JVM process 33 for inheritance by a cloned JVM
process 34.

Initially, the bootstrap class loader 39 and system applica-
tion class loader 40 is located and invoked by the master JVM
process 33 (block 151). Each class 36 and class contained in
a class library 37 is then iteratively processed (blocks 152-
163) as follows. First, the master JVM process 33 attempts to
locate the class in a system class dictionary (block 153). If the
class is found (block 154), no further class loading need be
performed. Otherwise, the master JVM process 33 attempts
to locate the class (block 155) through standard Java class
pathlocation. Ifthe class is found (block 156), no further class
loading need be performed. Otherwise, the master JVM pro-
cess 33 attempts to load the bytes for the class from the source
associated with the applicable bootstrap class loader 39 and
system application class loader 40 (block 157). If successful
(block 158), an instance of the class is created by compiling
the source and the class instance is installed in the system
class dictionary (block 160). If the bytes for the class cannot
be loaded from the source (block 158), the master JVM pro-
cess 33 throws a class not found exception (block 159). Fol-
lowing the loading or attempted loading of the class, if the
class requires resolution with respect to symbolic references
(block 161), the class is resolved by identifying the applicable
class loader for the fully qualified class (block 162). Process-
ing continues with the next class (block 163), after which the
routine returns.

While the invention has been particularly shown and
described as referenced to the embodiments thereof, those
skilled in the art will understand that the foregoing and other
changes in form and detail may be made therein without
departing from the spirit and scope of the invention.

20

25

30

35

40

45

50

55

60

65

10

What is claimed is:

1. A system for dynamic preloading of classes through
memory space cloning of a master runtime system process,
comprising:

A processor; A memory a class preloader to obtain a rep-
resentation of at least one class from a source definition
provided as object-oriented program code;

a master runtime system process to interpret and to instan-
tiate the representation as a class definition in a memory
space of the master runtime system process;

a runtime environment to clone the memory space as a
child runtime system process responsive to a process
request and to execute the child runtime system process;
and

a copy-on-write process cloning mechanism to instantiate
the child runtime system process by copying references
to the memory space of the master runtime system pro-
cess into a separate memory space for the child runtime
system process, and to defer copying of the memory
space of the master runtime system process until the
child runtime system process needs to modify the refer-
enced memory space of the master runtime system pro-
cess.

2. A system according to claim 1, further comprising:

a cache checker to determine whether the instantiated class
definition is available in a local cache associated with the
master runtime system process.

3. A system according to claim 2, further comprising:

a class locator to locate the source definition if the instan-
tiated class definition is unavailable in the local cache.

4. A system according to claim 1, further comprising:

a class resolver to resolve the class definition.

5. A system according to claim 1, further comprising:

at least one of a local and remote file system to maintain the
source definition as a class file.

6. A system according to claim 1, further comprising:

a process cloning mechanism to instantiate the child runt-
ime system process by copying the memory space of the
master runtime system process into a separate memory
space for the child runtime system process.

7. A system according to claim 1, wherein the master
runtime system process is caused to sleep relative to receiving
the process request.

8. A system according to claim 1, wherein the object-
oriented program code is written in the Java programming
language.

9. A system according to claim 8, wherein the master
runtime system process and the child runtime system process
are Java virtual machines.

10. A method for dynamic preloading of classes through
memory space cloning of a master runtime system process,
comprising:

executing a master runtime system process;

obtaining a representation of at least one class from a
source definition provided as object-oriented program
code;

interpreting and instantiating the representation as a class
definition in a memory space of the master runtime
system process; and

cloning the memory space as a child runtime system pro-
cess responsive to a process request and executing the
child runtime system process;

wherein cloning the memory space as a child runtime sys-
tem process involves instantiating the child runtime sys-
tem process by copying references to the memory space
of the master runtime system process into a separate
memory space for the child runtime system process; and

Case4:10-cv-03561-LB Documentl Filed08/12/10 Page99 of 161

US 7,426,720 B1

11

wherein copying references to the memory space of the
master runtime system process defers copying of the
memory space of the master runtime system process
until the child runtime system process needs to modity
the referenced memory space of the master runtime sys-
tem process.

11. A method according to claim 10, further comprising:

determining whether the instantiated class definition is

available in a local cache associated with the master
runtime system process.

12. A method according to claim 11, further comprising:

locating the source definition if the instantiated class defi-

nition is unavailable in the local cache.

13. A method according to claim 10, further comprising:

resolving the class definition.

14. A method according to claim 10, further comprising:

maintaining the source definition as a class file on at least

one of a local and remote file system.

15. A method according to claim 10, further comprising:

instantiating the child runtime system process by copying

the memory space of the master runtime system process
into a separate memory space for the child runtime sys-
tem process.

16. A method according to claim 10, further comprising:

causing the master runtime system process to sleep relative

to receiving the process request.

17. A method according to claim 10, wherein the object-
oriented program code is written in the Java programming
language.

18. A method according to claim 17, wherein the master
runtime system process and the child runtime system process
are Java virtual machines.

19. A computer-readable storage medium holding code for
performing the method according to claim 10.

20

25

30

12

20. An apparatus for dynamic preloading of classes

through memory space cloning of a master runtime system
process, comprising:

A processor; A memory means for executing a master
runtime system process;

means for obtaining a representation of at least one class
from a source definition provided as object-oriented pro-
gram code;

means for interpreting and means for instantiating the rep-
resentation as a class definition in a memory space of the
master runtime system process; and

means for cloning the memory space as a child runtime
system process responsive to a process request and
means for executing the child runtime system process;

wherein the means for cloning the memory space is con-
figured to clone the memory space of a child runtime
system process using a copy-on-write process cloning
mechanism that instantiates the child runtime system
process by copying references to the memory space of
the master runtime system process into a separate
memory space for the child runtime system process and
that defers copying of the memory space of the master
runtime system process until the child runtime system
process needs to modify the referenced memory space of
the master runtime system process.

21. A system according to claim 1, further comprising:

a resource controller to set operating system level resource
management parameters on the child runtime system
process.

22. A method according to claim 10, further comprising:

setting operating system level resource management
parameters on the child runtime system process.

#* #* #* #* #*

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel00 of 161

EXHIBIT E

caseaewgearte ocumen NIRRT R AT S

a9y United States

a2 Reissued Patent
Gosling

(10) Patent Number:
@5) Date of Reissued Patent:

USOORE38104E

US RE38,104 E
Apr. 29, 2003

(549) METHOD AND APPARATUS FOR
RESOLVING DATA REFERENCES IN
GENERATED CODE

5,347,632 A
5428792 A

9/1994 Filepp et al.
6/1995 Conner et al.

(List continued on next page.)

(75) Inventor: James Gosling, Redwood City, CA OTHER PUBLICATIONS
(US) Adele Goldberg and David Robson, “Smalltalk—80-The
(73) Assignee: Sun Microsystems, Inc., Palo Alto, CA Language and its Implementation”, Xerox Palo Alto
(US) Research Center, 1983 (reprinted with corrections, Jul.
1985) pp. 1-720.
(*) Notice: ;Flt;llin Eitent is subject to a terminal dis- (List continued on next page.)
Primary Examiner—Thomas M. Heckler
(21) Appl. No.: 09/261,970 (74) Atntorney, Agent, or Firm—Finnegan, Henderson,
(22) Filed: Mar. 3, 1999 Farabow, Garrett & Dunner, L.L.P.
57 ABSTRACT
Related U.S. Patent Documents D
Reissue of: A hybrid compiler-interpreter comprising a compiler for
(64) Patent No.: 5,367,685 “compiling” source program code, and an interpreter for
Issued: Nov. 22, 1994 interpreting the “compiled” code, is provided to a computer
Appl. No.: 07/994,655 system. The compiler comprises a code generator that gen-
Filed: Dec. 22, 1992 erates code in intermediate form with data references made
on a symbolic basis. The interpreter comprises a main
(51) Int. CL7 oo GO6F 9/45 interpretation routine, and two data reference handling
(52) US.Cl oo 717/140; 717/106; 717/136; ~ routines, a dynamic field reference routine for handling
717 /139’. N 42’, NN 46, symbghc referer.lces, and a static field refe.rence routine for
(58) Field of Search ? 717 /é 578 handhng numeric references. The dynaml(? field reference
717/106—108114 116 ’1 46_ i 47’ routine, when invoked, resolves a symbolic reference and
i i i rewrites the symbolic reference into a numeric reference.
(56) References Cited After re-writing, the dynamic field reference routine returns
to the main interpretation routine without advancing pro-
U.S. PATENT DOCUMENTS gram execution to the next instruction, thereby allowing the
4636940 A * 1/1987 Goodwin. It 1714 rewritten instruction with numeric reference to be reex-
4:667:290 A 5/1987 Goss et al. T ecutf.:d. The static field reference routine2 when invoked,
4667920 A * 5/1987 Goss et al. .overre.... 248/610 obtain data for the program from a data object based on the
4,686,623 A * 81987 Wallace 7178 numeric reference. After obtaining data, the static field
4729096 A * 3/1988 Larson 71775 reference routine advances program execution to the next
4,773,007 A * 9/1988 Kanada et al. . .. 7179 instruction before returning to the interpretation routine. The
5,201,050 A * 4/1993 McKeeman et al. - 1777 main interpretation routine selectively invokes the two data
5,230,050 A * 7/1993 litsuka et al. ..ooooovvnnnnene. TL/7 reference handling routines depending on whether the data
?%g’g% 2 5 iggj SEZE Z: Z}' reference in an interaction in a symbolic or a numeric
5307492 A * 4/1994 BEnSon oo...ooooovveeereo reference.
5,313,614 A * 5/1994 Goettelmann et al.
5,339,419 A 8/1994 Chan et al. 31 Claims, 5 Drawing Sheets
L
LEXICAL 42
ANALYZER
& PARSER g
. PR
;n'r:m:t’mmm
REPRESENTATION
BUILDER o6
INTERMEBIATE
8 REPRESENTATION
SEMANTIC
ANALYSER 8
ANNOTATED
o [T
GEN%ORIA)\%ON —+FORM OBJECT — 0
CODE

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel02 of 161

US RE38,104 E
Page 2

U.S. PATENT DOCUMENTS

5442771 A 8/1995 Filepp et al.

5,594,910 A 1/1997 Filepp et al.

5,613,117 A * 3/1997 Davidson et al. 717/8
5649204 A 7/1997 Pickett

5,758,072 A 5/1998 Filepp et al.

5836014 A * 11/1998 Faiman, JT. ocoveeeerreenn 7177

OTHER PUBLICATIONS

Andrew Black, Norman Hutchinson, Eric Jul and Henry
Levy, “Distribution and Abstract Types in Emerald”, Uni-
versity of Washington, Technical Report No. 85-08-05,
Aug. 1985, pp. 1-10.

Andrew Black, Norman Hutchinson, Eric Jul, and Henry
Levy, “Object Structure in the Emerald System”, University
of Washington, Technical Report 86—04-03, Apr. 1986, pp.
1-14.

Andrew Blaine Proudfoot, “Replects: data replication in the
Eden System”, Department of Computer Science, Univer-
sity of Washington, Technical Report No. TR-85-12-04,
Dec. 1985, pp. 1-156.

Andrew P. Black and Henry M. Levy, “A Language for
Distributed Programming”, Department of Computer Sci-
ence, University of Washington, Technical Report
86-02-03, Feb. 1986, p. 10.

Andrew P. Black, “Supporting Distributed Applications:
Experience with Eden”, Department of Computer Science,
University of Washington, Technical Report 85-03-02, Mar.
1985, pp. 1-21.

Andrew P. Black, “The Eden Programming Language”,
Department of Computer Science, FR-35, University of
Washington, Technical Report 85-09-01, Sep. 1985
(Revised, Dec. 1985), pp. 1-19.

Andrew P. Black, “The Eden Project: Overview and Expe-
riences”, Department of Computer Science, University of
Washington, EUUG, Autumn °86 Conference Proceedings,
Manchester, UK, Sep. 22-25 1986, pp. 177-189.

Andrew P. Black, Edward D. Lazowska, Jerre D. Noe and
Jan Sanislo, “The Eden Project: A Final Report”, Depart-
ment of Computer Science, University of Washington, Tech-
nical Report 86—11-01, Nov. 1986, pp. 1-28.

Calton Pu, “Replication and Nested Transactions in the Eden
Distributed System”, Doctoral Disseration, University of
Washington, Aug. 6, 1986, pp. 1-179 (1 page Vita).

Cara Holman and Guy Almes, “The Eden Shared Calendar
System”, Department of Computer Science, FR-35, Univer-
sity of Washington, Technical Report 85-05-02, Jun. 22,
1985, pp. 1-14.

Eric Jul, “Object Mobility in a Distributed Object—Oriented
System”, a Dissertation, University of Washington, 1989,
pp. 1-154 (1 page Vita).

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew
Black, “Fine—Grained Mobility in the Emerald System”,
University of Washington, ACM Transactions on Computer
Systems, vol. 6, No. 1, Feb. 1988, pp. 109-133.

Felix Samson Hsu, “Reimplementing Remote Procedure
Calls”, University of Washington, Thesis Mar. 22, 1985, pp.
1-106.

Guy Almes, Andrew Black, Carl Bunje and Douglas Wiebe,
“Edmas: Alocally Distributed Mail System”, Department of

Computer Science, University of Washington, Technical
Report 83-87-01, Jul. 7, 1983, Abstract & pp. 1-17.

Guy T. Almes, “Integration and Distribution in the Eden
System”, Department of Computer Science, University of
Washington, Technical Report 83—01-02, Jan. 19, 1983, pp.
1-18 & Abstract.

Guy T. Almes, “The Evolution of th Eden Invocation
Mechanism”, Department of Computer Science, University
of Washington, Technical Report 83-01-03, Jan. 19, 1983,
pp. 1-14 & Abstract.

Guy T. Almes, Andrew P. Black, Edward D. Lazawska, and
Jerre D. Noe, “The Eden System: A Technical Review”,
Department of Computer Science, University of Washing-
ton, Technical Report 83-10-05, Oct. 1983, pp. 1-25.
Guy T. Almes, Michael J. Fischer, Hellmut Golde, Edward
D. Lazawska, Jerre D. Noe, “Research in Integrated Dis-
tributed Computing”, Department of Computer Science,
University of Washington, Oct. 1979, pp. 1-42.

Krasner et al., “Smalltalk—80: Bits of History, Words of
Advice”, 1983 Xerox Corporation, pp. 1-344.

Norman C. Hutchinson, “Emerald: An Object—Based Lan-
guage for Distributed Programming”, a Dissertation, Uni-
versity of Washington, 1987, pp. 1-107.

Proceedings of the Eighth Symposium on Operating Sys-
tems Principles, Dec. 14-16, 1981, ACM, Special Interest
Group on Operating Systems, Association for Computing
Machinery, vol. 15, No. 5, Dec. 1981, ACM Order No.
534810.

Wm. A. Wulf, “PQCC: A Machine—Relative Compiler Tech-
nology,” Carnegie—Mellon University, Pittsburgh, PA, Sep.
1980, pp. 1-22.

Inder—jeet S. Gujral, “Retargetable Code Generation for
ADA* Compilers”, SoftTech, Inc., Waltham, MA, Dec.,
1981, pp. 1-13.

Nori et al,, “The Pascal <P> Compiler: Implementation
Notes”, Jul. 1976, pp. 1-53.

Glanville et al., “A New Method for Compiler Code Gen-
eration (Extended Abstract)”, Computer Science Division,
University of California, Berkeley, CA, pp. 231-240.
Colusa Software White Paper: “Omniware Technical Over-
view”, Colusa Software, Inc., 1995, pp. 1-14.

Colusa Software White Paper: Omniware: A Universal Sub-
strate for Mobile Code: Colusa Software, Inc., pp. 1-13.
Ali-Reza Adl-Tabatabai et al., “Efficient and Language—
Independent Mobile Programs™, Proceedings of PLDI °96,
ACM SIGPLAN °96 Conf. on Programming Language
Design and Implementation, May, 1996, pp. 1-10.

Lucco et al., “Omniware: A Universal Substrate for Web
Programming”, pp. 1-11.

Wahbe et al., “Efficient Software—Based Fault Isolation”,
Computer Science Division, University of California, Ber-
keley, CA, pp. 203-216.

Graham et al., “Adaptable Binary Programs”, 1995 Usenix
Technical Conference—Jan., 1995, New Orleans, LA, pp.
315-325.

Steven Lucco, “High—Performance Microkernel Systems”,
School of Computer Science, Carengie Mellon University.
p- 1.

Sawdon et al., “A Preliminary Report on Software Prefetch-
ing in the Instruction Stream”, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, pp. 1-7.
Bolosky, et al., “Operating System Directions for the Next
Millennium”, Microsoft Research, Redmond, WA, pp. 1-7.
1995 Project Summaries: “Software System Support for
High Performance Multicomputing”, School of Computer
Science, Carnegie Mellon University, Jul. 1995, pp. 1-4.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel03 of 161

US RE38,104 E
Page 3

Ernst et al., “Code Compression”, 1997, pp. 358-365.
Peter Deutsch et al., “Efficient Implementation of the Small-
talk—80 System™, 1983, pp. 297-302.

Engelstad et al., “A Dynamic C-Based Object—Oriented
System for UNIX”, IEEE Software, May, 1991, pp. 73-85.
Gerring, et al., “S—1 U-Code, A Universal P-Code for the
S—1 Project (PAIL—6)”, Stanford University, Computer Sci-
ence Department, Technical Note No. 159, Aug., 1979, pp.
1-7.

Gary McWilliams, “Digital’s Architectural Gamble”, Data-
mation, Mar., 1989, pp. 14-24.

“Architecture—Neutral Distribution Format”, Open Software
Foundation, Cambridge, MA, pp. 1-3.

Wolf et al., “Portable Compiler Eases Problems of Software
Migration”, System Design/Software, pp. 147-153.
Fischer et al., “Crafting a Compiler”, 1988, pp. 551-555,
632-641.

Anklam et al., “Engineering a Compiler, VAX-11 Code
Generation and Optimization”, 1982 Digital Equipment
Corporation, pp. 124-137.

Tanenbaum et al., “A Practical Tool Kit for Making Portable
Compilers”, Computing Practices, Communications of the
ACM, Sep., 1983, vol. 26, No. 9, pp. 654-660.

Almasi et al., “Highly Parallel Computing”, pp. 247-277.
Ann Sussman, “OSF Eyes Shrink—Wrap RFT”, Unix Today,
pp- 1, 43.

Evan Grossman, “OSF Adds Ingredients to Operating Sys-
tem”, PC Week, Mar. 27, 1989.

Sites et al.,, Universal P—Code Definition, Version 0.3,
Department of Electrical Engineering and Computer Sci-
ences, University of California at San Diego, Jul. 1979, pp.
5-9.

Goldberg et al., “Smalltalk—80: The Language and Its Imple-
mentation”, Addison—Wesley, Reading, MA, 1983, pp.
594-598.

Richard L. Sites and Daniel R. Perkins, “Universal P-Code
Definition, version (0.3),” Dept. of Electrical Engineering
and Computer Sciences, University of California at San
Diego, Jul., 1979, pp. 1-40.

Richard L. Sites et al., “Machine—Independent Pascal Opti-
mizer Project,” UCSD/CS-79/038, Nov. 1979, pp. 1-94.

Peter Nye, U-CODE: An Intermediate Language for Pascal
and Fortran (PAIL-8), Feb. 16, 1980, pp. 1-37-2.

Chung, Kin—-Man and Yuen, Herbert, “A ‘Tiny’ Pascal
Compiler: the P—Code Interpreter,” BYTE Publications,
Inc., Sep. 1978.

Chung, Kin—-Man and Yuen, Herbert, “A ‘Tiny’ Pascal
Compiler: Part 2: The P—Compiler,” BYTE Publications,
Inc., Oct. 1978.

Thompson, Ken, “Regular Expression Search Algorithm,”
Communications of the ACM, vol. II, No. 6, p. 149 et seq.,
Jun. 1968.

Mitchell, James G., Maybury, William, and Sweet, Richard,
Mesa Language Manual, Xerox Corporation.

McDaniel, Gene, “An Analysis of a Mesa Instruction Set,”
Xerox Corporation, May 1982.

Pier, Kenneth A., “A Retrospective on the Dorado, A High—
Performance Personal Computer,” Xerox Corporation, Aug.
1983.

Pier, Kenneth A., “A Retrospective on the Dorado, A High—
Performance Personal Computer,” IEEE Conference Pro-
ceedings, The 10th Annual International Symposium on
Computer Architecture, 1983.

Goldberg, Adele and Robson, David, “Smalltalk—80: The
Language,” ParcPlace Systems and Xerox PARC, Addison—
Wesley Publishing Company, 1989, Chap. 21, pp. 417-442.

Budd, Timothy, “A Little Smalltalk,” Oregon State Univer-
sity, Addison—Wesley Publishing Company, 1987, Chap. 13,
pp. 150-160, Chapter 14, pp. 161-175, Chapter 15, pp.
176-192.

Krasner, Glenn, “The Smalltalk—80 Virtual Machine” BYTE
Publications Inc., Aug. 1991, pp. 300-320.

Engelstad, Steve, et al., “A Dynamic C-Based Object—Ori-
ented System for Unix,” Software, May 1991, pp. 73-85.
Deutsch, L. Peter, et al., “Efficient Implementation of the
Smartalk—80 System,” Conference Record of the Eleventh
Annual ACM Symposium on Principles of Programming
Languages, Jan. 15-18, 1984, pp. 297-302.

* cited by examiner

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel04 of 161

U.S. Patent Apr. 29, 2003 Sheet 1 of 5 US RE38,104 E
INSTRUCTION
DATA
SEQUENCE OBJECT
10
® SLOT 1 =23 }r
* SLOT2=17)
14
¥ LOAD2 o
NUMERIC
® REFERENCE °
e ®
Figure 1A
Prior Art
INSTRUCTION
SEQUENCE Rty
10'
¢ x"=23 4
° . 12
y =17
14'\ /
S w "
AD"y SYMBOLIC ®
REFERENCE
® °
® ®
Figure 1B

Prior Art

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel05 of 161

U.S. Patent Apr. 29, 2003 Sheet 2 of 5 US RE38,104 E
30 28
Z
INPUT/ - ——>
OUTPUT vo -6 STORAGES
DEVICES
I] CPU -22 r
MEMORY -24
20
NETWORK - 32
Figure 2
40
APPLICATION /
COMPILER - /38
INTERPRETER 34
36
OPERATING SYSTEM /

Figure 3

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel06 of 161

US RE38,104 E

Sheet 3 of 5

Apr. 29, 2003

U.S. Patent

G dun3gy
[]
[J
[]
AONTHIITY
89 g ECIK|
09 °
| °
4A0D LOALHO .
NHOA —
ALVIAINYLLNI J1
99
NOLLIaaQv
¥9
NIV

89
NOILLVINISTIdTY

<4— JALVIQIWYIALNI

JA.LVLONNY

d4aodo

NOLLVINISHUdIH

LLVIATNYALNI — "]

ZOEZHHZ@UL
3

09

YISXTVNV
OLLNVINIS

JIang

NOLLVLNASTIdAYH
JLVICINHALLNI

7

| 4

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel07 of 161

U.S. Patent Apr. 29, 2003 Sheet 4 of 5 US RE38,104 E
OPERATOR
IMPLEMENTATIONS
74
ADD /
72
y, n 76
g2 .BYTE MAIN

- CODE—"| INTERPRETATION [———#~

ROUTINE
STATIC FIELD /78

REFERENCE (SFR)

Flg ure 6 DYNAMIC FIELD | 80
REFERENCE (DFR) [~
[]
o
[]
BYTE CODE = | ..
REFERENCE |-

MAIN: MAIN: 90
STATIC REF INVOKE DYNAMIC ¥V
? FIELD REF
94
v 84
MAIN:
INVOKE STATIC DFR: REWRITE
FIELD REF SYMBOLIC REF 92
) IN OBJECT /
SFR: OBTAIN 96
DATA /

Y

SFR: CURRENT /98
INSTR = NEXT INSTR

TURN TO MAIN |- 100

[SFR/DFR: Figure 7
RE

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel08 of 161

U.S. Patent Apr. 29, 2003 Sheet 5 of 5 US RE38,104 E
INSTRUCTION DATA
SEQUENCE OBJECT
e 10
° SLOT1="x"=23 V)
ne 12
M \ L0AD><'2 :
SYMBOLIC
REFERENCE ¢
. REWRITTEN
AS NUMERIC
REFERENCE
o

Figure 8

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel09 of 161

US RE38,104 E

1

METHOD AND APPARATUS FOR
RESOLVING DATA REFERENCES IN
GENERATED CODE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This is a continuation of reissue application Ser. No.
08/755,764, filed Nov. 21, 1996, now U.S. Pat. Re. No.
36,204, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of computer
systems, in particular, programming language compilers and
interpreters of these computer systems. More specifically,
the present invention relates to resolving references in
compiler generated object code.

2. Background

The implementation of modern programming languages,
including object oriented programming languages, are gen-
erally grouped into two categories: compiled and inter-
preted.

In a compiled programming language, a computer pro-
gram (called a compiler) compiles the source program and
generates executable code for a specific computer architec-
ture. References to data in the generated code are resolved
prior to execution based on the layout of the data objects that
the program deals with, thereby, allowing the executable
code to reference data by their locations. For example,
consider a program that deals with a point data object
containing two variables x and y, representing the x and y
coordinates of a point, and further assume that the variables
x and y are assigned slots 1 and 2 respectively, in each
instance of the point data object. Thus, an instruction that
accesses or fetches y, such as the Load instruction 14
illustrated in FIG. 1, is resolved to reference the variable y
by the assigned slot 2 before the instruction sequence is
executed. Particular examples of programming language
compilers that generate code and resolve data references in
the manner described above include C and C++ compilers.

This “compiled” approach presents problems when a
program is constructed in pieces, which happens frequently
under object oriented programming. For example, a program
may be constructed from a library and a main program. If a
change is made to the library, such that the layout of one of
the data objects it implements is changed, then clients of that
library, like the main program, need to be recompiled.
Continuing the preceding example, if the point data object
had a new field added at the beginning called name, which
contains the name of the point, then the variables x and y
could be reassigned to slots 2 and 3. Existing programs
compiled assuming that the variables x and y and are in slots
1 and 2 will have to be recompiled for them to execute
correctly.

In an interpreted language, a computer program (called a
translator) translates the source statements of a program into
some intermediate form, typically independent of any com-
puter instruction set. References to data in the intermediate
form are not fully resolved before execution based on the
layout of the data objects that the program deals with.
Instead, references to data are made on a symbolic basis.
Thus, an instruction that accesses or fetches y, such as the
Load instruction 14' illustrated in FIG. 1, references the
variable y by the symbolic name “y”. The program in

10

15

20

25

30

35

40

45

50

55

60

65

2

intermediate form is executed by another program (called an
interpreter) which scans through the code in intermediate
form, and performs the indicated actions. Each of the
symbolic references is resolved during execution each time
the instruction comprising the symbolic reference is inter-
preted. A particular example of a programming language
interpreter that translates source code into intermediate form
code and references data in the manner described above is
the BASIC interpreter.

The “interpreted” approach avoids the problems encoun-
tered with the “compiled” approach, when a program is
constructed in pieces. However, because of the extra level of
interpretation at execution time, each time an instruction
comprising a symbolic reference is interpreted, execution is
slowed significantly.

Thus, it is desirable if programming languages can be
implemented in a manner that provides the execution per-
formance of the “compiled” approach, and at the same time,
the flexibility of the “interpreted” approach for altering data
objects, without requiring the compiled programs to be
recompiled. As will be disclosed, the present invention
provides a method and apparatus for resolving data refer-
ences in compiler generated object code that achieves the
desired results.

SUMMARY OF THE INVENTION

A method and apparatus for generating executable code
and resolving data references in the generated code is
disclosed. The method and apparatus provides execution
performance substantially similar to the traditional compiled
approach, as well as the flexibility of altering data objects
like the traditional interpreted approach. The method and
apparatus has particular application to implementing object
oriented programming languages in computer systems.

Under the present invention, a hybrid compiler-interpreter
comprising a compiler for “compiling” source program
code, and an interpreter for interpreting the “compiled”
code, is provided to a computer system. The compiler
comprises a code generator that generates code in interme-
diate form with data references made on a symbolic basis.
The interpreter comprises a main interpretation routine, and
two data reference handling routines, a static field reference
routine for handling numeric references and a dynamic field
reference routine for handling symbolic references. The
dynamic field reference routine, when invoked, resolves a
symbolic reference and rewrites the symbolic reference into
a numeric reference. After rewriting, the dynamic field
reference routine returns to the interpreter without advanc-
ing program execution to the next instruction, thereby allow-
ing the rewritten instruction with numeric reference to be
reexecuted. The static field reference routine, when invoked,
obtain data for the program from a data object based on the
numeric reference. After obtaining data, the static field
reference routine advances program execution to the next
instruction before returning to the interpreter. The main
interpretation routine selectively invokes the two data ref-
erence handling routines depending on whether the data
reference in an instruction is a symbolic or a numeric
reference.

As a result, the “compiled” intermediate form object code
of a program achieves execution performance substantially
similar to that of the traditional compiled object code, and
yet it has the flexibility of not having to be recompiled when
the data objects it deals with are altered like that of the
traditional translated code, since data reference resolution is
performed at the first execution of a generated instruction
comprising a data reference.

Case4:10-cv-03561-LB Documentl Filed08/12/10 PagellO of 161

US RE38,104 E

3
BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features, and advantages of the present
invention will be apparent from the following detailed
description of the presently preferred and alternate embodi-
ments of the invention with references to the drawings in
which:

FIG. 1 shows the prior art compiled approach and the
prior art interpreted approach to resolving data reference.

FIG. 2 illustrates an exemplary computer system incor-
porated with the teachings of the present invention.

FIG. 3 illustrates the software elements of the exemplary
computer system of FIG. 2.

FIG. 4 illustrates one embodiment of the compiler of the
hybrid compiler-interpreter of the present invention.

FIG. § illustrates one embodiment of the code generator
of the compiler of FIG. 4.

FIG. 6 illustrates one embodiment of the interpreter and
operator implementations of the hybrid compiler-interpreter
of the present invention.

FIG. 7 illustrates the cooperative operation flows of the
main interpretation routine, the static field reference routine
and the dynamic field reference routine of the present
invention.

FIG. 8 illustrates an exemplary resolution and rewriting of
a data reference under the present invention.

DETAILED DESCRIPTION PRESENTLY
PREFERRED AND ALTERNATE
EMBODIMENTS

A method and apparatus for generating executable code
and resolving data references in the generated code is
disclosed. The method and apparatus provides execution
performance substantially similar to the traditional compiled
approach, as well as the flexibility of altering data objects
like the traditional interpreted approach. The method and
apparatus has particular application to implementing object
oriented programming languages. In the following descrip-
tion for purposes of explanation, specific numbers, materials
and configurations are set forth in order to provide a thor-
ough understanding of the present invention. However, it
will be apparent to one skilled in the art that the present
invention may be practiced without the specific details. In
other instances, well known systems are shown in diagram-
matical or block diagram form in order not to obscure the
present invention unnecessarily.

Referring now to FIGS. 2 and 3, two block diagrams
illustrating an exemplary computer system incorporated
with the teachings of the present invention are shown. As
shown in FIG. 2, the exemplary computer system 20 com-
prises a central processing unit (CPU) 22, a memory 24, and
an I/O module 26. Additionally, the exemplary computer
system 20 also comprises a number of input/output devices
30 and a number of storage devices 28. The CPU 22 is
coupled to the memory 24 and the I/O module 26. The
input/output devices 30, and the storage devices 28 are also
coupled to the I/O module 26. The I/O module 26 in turn is
coupled to a network 32.

Except for the manner they are used to practice the present
invention, the CPU 22, the memory 24, the I/O module 26,
the input/output devices 30, and the storage devices 28, are
intended to represent a broad category of these hardware
elements found in most computer systems. The constitutions
and basic functions of these elements are well known and
will not be further described here.

10

15

20

25

30

35

40

45

50

55

60

65

4

As shown in FIG. 3, the software elements of the exem-
plary computer system of FIG. 2 comprises an operating
system 36, a hybrid compiler-interpreter 38 incorporated
with the teachings of the present invention, and applications
compiled and interpreted using the hybrid compiler-
interpreter 38. The operating system 36 and t he applications
40 are intended to represent a broad categories of these
software elements found in many computer systems. The
constitutions and basic functions of these elements are also
well known and will not be described further. The hybrid
compiler-interpreter 38 will be described in further detail
below with references to the remaining figures.

Referring now to FIGS. 4 and 5§, two block diagrams
illustrating the compiler of the hybrid compiler-interpreter
of the present invention are shown. Shown in FIG. 4 is one
embodiment of the compiler 42 comprising a lexical ana-
lyzer and parser 44, an intermediate representation builder
46, a semantic analyzer 48, and a code generator 50. These
elements are sequentially coupled to each other. Together,
they transform program source code 52 into tokenized
statements 54, intermediate representations 56, annotated
intermediate representations 58, and ultimately intermediate
form code 60 with data references made on a symbolic basis.
The lexical analyzer and parser 44, the intermediate repre-
sentation builder 46, and the semantic analyzer 48, are
intended to represent a broad category of these elements
found in most compilers. The constitutions and basic func-
tions of these elements are well known and will not be
otherwise described further here. Similarly, a variety of well
known tokens, intermediate representations, annotations,
and intermediate forms may also be used to practice the
present invention.

As shown in FIG. 5, the code generator 50 comprises a
main code generation routine 62, a number of complimen-
tary operator specific code generation routines for handling
the various operators, such as the ADD and the IF code
generation routines, 64 and 66, and a data reference handling
routine 68. Except for the fact that generated coded 60 are
in intermediate form and the data references in the generated
code are made on a symbolic basis, the main code generation
routine 62, the operator specific code generation routines,
e.g. 64 and 66, and the data reference handling routine 68,
are intended to represent a broad category of these elements
found in most compilers. The constitutions and basic func-
tions of these elements are well known and will not be
otherwise described further here.

For further descriptions on various parsers, intermediate
representation builders, semantic analyzers, and code
generators, see A. V. Aho, R. Sethi, and J. D. Ullman,
Compilers Principles, Techniques and Tools. Addision-
Wesley, 1986, pp. 25-388, and 463-512.

Referring now to FIGS. 6 and 7, two block diagrams
illustrating one embodiment of the interpreter of the hybrid
compiler-interpreter of the present invention and its opera-
tion flow for handling data references is shown. As shown in
FIG. 6, the interpreter 70 comprises a main interpretation
routine 72, a number of complimentary operator specific
interpretations routines, such as the ADD and the IF inter-
pretation routines, 74 and 76, and two data reference inter-
pretation routines, a static field reference routine (SFR) and
a dynamic field reference routine (DFR), 78 and 80. The
main interpreter routine 72 receives the byte codes 82 of the
intermediate form object code as inputs, and interprets them,
invoking the operator specific interpretations routines, e.g.
74 and 76, and the data reference routines, 78 and 80, as
necessary. Except for the dynamic field reference routine 80,
and the manner in which the main interpretation routine 72

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagelll of 161

US RE38,104 E

5

and the state field reference routine 78 cooperates with the
dynamic field reference routine 80 to handle data references,
the main interpretation routine 72, the operator specific
interpretation routines, e.g. 74 and 76, and the static field
reference routine 78, are intended to represent a broad
category of these elements found in most compilers and
interpreters. The constitutions and basic functions of these
elements are well known and will not be otherwise described
further here.

As shown in FIG. 7, upon receiving a data reference byte
code, block 86, the main interpretation routine determines if
the data reference is static, i.e. numeric, or dynamic, i.e.
symbolic, block 88. If the data reference is a symbolic
reference, branch 88b, the main interpretation routine
invokes the dynamic field reference routine, block 90. Upon
invocation, the dynamic field reference routine resolves the
symbolic reference, and rewrites the symbolic reference in
the intermediate form object code as a numeric reference,
block 92. Upon rewriting the data reference in the object
code, the dynamic field reference routine returns to the main
interpretation routine, block 100, without advancing the
program counter. As a result, the instruction with the rewrit-
ten numeric data reference gets reexecuted again.

On the other hand, if the data reference is determined to
be a numeric reference, branch 88a, the main interpretation
routine invokes the static field reference routine, block 94.
Upon invocation, the static field reference routine obtain the
data reference by the numeric reference, block 96. Upon
obtaining the data, the static field reference routine advances
the program counter, block 98, and returns to the main
interpretation routine, block 100.

Referring now to FIG. 8, a block diagram illustrating the
alteration and rewriting of data references under the present
invention in further detail is shown. As illustrated, a data
referencing instruction, such as the LOAD instruction 14",
is initially generated with a symbolic reference, e.g. “y”.
Upon its first interpretation in execution, the data referenc-
ing instruction, e.g. 14, is dynamically resolved and rewrit-
ten with a numeric reference, e.g. slot 2. Thus, except for the
first execution, the extra level of interpretation to resolve the
symbolic reference is no longer necessary. Therefore, under
the present invention, the “compiled” intermediate form
object code of a program achieves execution performance
substantially similar to that of the traditional compiled
object code, and yet it has the flexibility of not having to be
recompiled when the data objects it deals with are altered
like that of the traditional translated code, since data refer-
ence resolution is performed at the first execution of a
generated instruction comprising a symbolic reference.

While the present invention has been described in terms
of presently preferred and alternate embodiments, those
skilled in the art will recognize that the invention is not
limited to the embodiments described. The method and
apparatus of the present invention can be practiced with
modification and alteration within the spirit and scope of the
appended claims. The description is thus to be regarded as
illustrative instead of limiting on the present invention.

What is claimed is:

[1. In a computer system comprising a program in source
code form, a method for generating executable code for said
program and resolving data references in said generated
code, said method comprising the steps of:

a) generating executable code in intermediate form for
said program in source code form with data references
being made in said generated code on a symbolic basis,
said generated code comprising a plurality of instruc-
tions of said computer system;

6

b) interpreting said instructions, one at a time, in accor-
dance to a program execution control;
¢) resolving said symbolic references to corresponding
numeric references, replacing said symbolic references
5 with their corresponding numeric references, and con-
tinuing interpretation without advancing program
execution, as said symbolic references are encountered
while said instructions are being interpreted; and
d) obtaining data in accordance to said numeric
10 references, and continuing interpretation after advanc-
ing program execution, as said numeric references are
encountered while said instruction are being inter-
preted;

said steps b) through d) being performed iteratively and
interleaving.]

[2. The method as set forth in claim 1, wherein, said
program in source code form is implemented in source code
form of an object oriented programming language.]

[3. The method as set forth in claim 2, wherein said
programming language is C.]

[4. The method as set forth in claim 2, wherein, said
programming language is C++.]

[5. The method as set forth in claim 1, wherein, said
program execution control is a program counter said con-
tinuing interpretation in step c) is achieved by performing
said step b) after said ¢) without incrementing said program
counter; and

said continuing interpretation in said step d) is achieved
by performing said step b) after said d) after increment-
ing said program counter.]

[6. In a computer system comprising a program in source
code form, an apparatus for generating executable code for
said program and resolving data references in said generated
code, said apparatus comprising:

a) compilation means for receiving said program in source
code form and generating executable code in interme-
diate form for said program in source code form with
data references being made in said generated code on a
symbolic basis, said generated code comprising a plu-
rality of instructions of said computer system;

b) interpretation means for receiving said generated code
and interpreting said instructions, one at a time;

¢) dynamic reference handling means coupled to said
interpretation means for resolving said symbolic refer-

45 ences to corresponding numeric references, replacing
said symbolic references with their corresponding
numeric references, and continuing interpretation by
said interpretation means without advancing program
execution, as said symbolic references are encountered

50 while said instructions are being interpreted by said
interpretation means; and

d) static reference handling means coupled to said inter-
pretation means for obtaining data in accordance to said
numeric references, and continuing interpretation by

55 said interpretation means after advancing program
execution, as said numeric references are encountered
while said instruction are being interpreted by said
interpretation means;

said interpretation means, said dynamic reference han-

60 dling means, and said static reference handling means
performing their corresponding functions iteratively
and interleavingly.]

[7. The apparatus as set forth in claim 6, wherein, said
program in source code form is implemented in source code

65 form of an object oriented programming language.]

[8. The apparatus as set forth in claim 7, wherein, said

programming language is C.]

15

20

25

30

35

40

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagell?2 of 161

US RE38,104 E

7

[9. The apparatus as set forth in claim 7, wherein, said
programming language is C++.]

[10. The apparatus as set forth in claim 6, wherein, and
program execution control is a program counter.]

11. An apparatus comprising:

a memory containing intermediate form object code con-
stituted by a set of instructions, certain of said instruc-
tions containing one or more symbolic references; and

a processor configured fo execute said instructions con-
taining one or more symbolic references by determining
a numerical reference corresponding to said symbolic
reference, storing said numerical references, and
obtaining data in accordance fo said numerical refer-
ences.

12. A computer-readable medium containing instructions
for controlling a data processing system to perform a
method for interpreting intermediate form object code com-
prised of instructions, certain of said instructions containing
one or more symbolic references, said method comprising
the steps of:

interpreting said instructions in accordance with a pro-
gram execution control; and

resolving a symbolic reference in an instruction being
interpreted, said step of resolving said symbolic refer-
ence including the substeps of:
determining a numerical reference corresponding to

said symbolic reference, and
storing said numerical reference in a memory.
13. A computer-implemented method for executing
instructions, certain of said instructions containing one or
more symbolic references, said method comprising the steps
of:
resolving a symbolic reference in an instruction, said step
of resolving said symbolic reference including the sub-
steps of:
determining a numerical reference corresponding to said
symbolic reference, and
storing said numerical reference in a memory.
14. The method of claim 3, wherein said substep of storing
said numerical reference comprises the substep of replacing
said symbolic reference with said numerical reference.
15. The method of claim 3, wherein said step of resolving
said symbolic reference further comprises the substep of
executing said instruction containing said symbolic refer-
ence using the stored numerical reference.
16. The method of claim 3, wherein said step of resolving
said symbolic reference further comprises the substep of
advancing program execution control after said substep of
executing said instruction containing said symbolic refer-
ence.
17. In a computer system comprising a program, a method
for executing said program comprising the steps of:
receiving intermediate form object code for said program
with symbolic data references in certain instructions of
said intermediate form object code; and
converting the instructions of the intermediate form object
code having symbolic data references, said converting
step comprising the substeps of:
resolving said symbolic references fo corresponding
numerical references,

storing said numerical references, and

obtaining data in accordance fo said numerical refer-
ences.

18. A computer-implemented method for executing pro-
gram operations, each operation being comprised of a set of
instructions, certain of said instructions containing one or
more symbolic references, said method comprising the steps

of:

10

15

20

25

30

35

40

60

65

8

receiving a set of instructions reflecting an operation; and

performing the operation corresponding to the received
set of instructions, wherein at least one of said symbolic
references is resolved by determining a numerical
reference corresponding to said symbolic reference,
storing said numerical reference, and obtaining data in
accordance to said stored numerical reference.

19. A memory for use in executing a program by a

processor, the memory comprising:

intermediate form code containing symbolic field refer-
ences associated with an intermediate representation of
source code for the program,

the intermediate representation having been generated by
lexically analyzing the source code and parsing output
of said lexical analysis, and

wherein the symbolic field references are resolved by
determining a numerical reference corresponding to
said symbolic reference, and storing said numerical
reference in a memory.

20. A computer-implemented method comprising:

receiving a program that comprises a set instructions
written in an intermediate form code;

replacing each instruction in the program with a symbolic
data reference with a new instruction containing a
numeric reference resulting from invocation of a
dynamic field reference routine fo resolve the symbolic
data reference; and

executing the program by performing an operation in
accordance with each instruction or new instruction,
depending upon whether an instruction has been
replaced with a new instruction in accordance with the
replacing step.

2]. A data processing system, comprising:

a processor; and

a memory comprising a control program for causing the
processor to (i) receive a program that comprises a set
instructions written in an intermediate form code, (ii)
replace each instruction in the program with a sym-
bolic data reference with a new instruction containing
a numeric reference resulting from invocation of a
dynamic field reference routine fo resolve the symbolic
data reference, and (iii) execute the program by per-
forming an operation in accordance with each instruc-
tion or new instruction, depending upon whether an
instruction has been replaced with a new instruction in
accordance with the replacing step.

22. An apparatus comprising:

a memory containing a compiled program in intermediate
form object code constituted by a set of instructions, at
least one of the instructions containing a symbolic
reference; and

a processor configured to execute the instruction by
determining a numerical reference corresponding to
the symbolic reference, and performing an operation in
accordance with the instruction and data obtained in
accordance with the numerical reference without
recompiling the program or any portion thereof.

23. A computer-implemented method, comprising:

receiving a program with a set instructions wriften in an
intermediate form code;

analyzing each instruction of the program to determine
whether the instruction contains a symbolic reference
to a data object; and

executing the program, wherein when it was determined
that an instruction contains a symbolic reference, data

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagell3 of 161

US RE38,104 E

9

from a storage location identified by a numeric refer-
ence correspoding fo the symbolic reference is used
thereafter fo perform an operation corresponding ro
that instruction.

24. A computer-implemented method for executing a
program comprised of bytecodes, the method comprising:

determining immediately prior to execution whether a

bytecode of the program contains a symbolic data
reference;

when it is determined that the bytecode of the program

contains a symbolic data reference, invoking a dynamic
field reference routine to resolve the symbolic data
reference; and

executing thereafter the bytecode using stored data

located using a numeric reference resulting from the
resolution of the symbolic reference.

25. A data processing system, comprising:

a processor; and

a memory comprising a program comprised of bytecodes

and instructions for causing the processor to (i) deter-
mine immediately prior to execution of the program
whether a bytecode of the program contains a symbolic
data reference, (ii) when it is determined that the
bytecode of the program contains a symbolic data
reference, invoke a dynamic field reference routine to
resolve the symbolic data reference, and (iii) execute
thereafter the bytecode using stored data located using
a numeric reference resulfing from the resolution of the
symbolic reference.

26. A computer program product containing instructions
for causing a computer to perform a method for executing a
program comprised of bytecodes, the method comprising:

determining immediately prior to execution whether a

bytecode of the program contains a symbolic data
reference;

when it is determined that the bytecode of the program
contains a symbolic data reference, invoking a dynamic
field reference routine to resolve the symbolic data
reference; and

executing thereafter the bytecode using stored data

located using a numeric reference resulting from the
resolution of the symbolic reference.

27. A computer-implemented method comprising:

receiving a program with a set of original instructions

written in an intermediate form code;

generating a set of new instructions for the program that

contain numeric references resulting from invocation of
a routine to resolve any symbolic data references in the
set of original instructions; and

executing the program using the set of new instructions.

28. A data processing system, comprising:

a processor; and

a memory comprising a control program for causing the

processor to (i) receive a program with a set of original
instructions written in an intermediate form code, (ii)
generate a set of new instructions for the program that
contain numeric references resulting from invocation of
a routine to resolve any symbolic data references in the
set of original instructions, and (iii) executing the
program using the set of new instructions.

29. A computer program product containing instructions
for causing a computer to perform a method, the method
cOmprising:

receiving a program with a set of original instructions

written in an intermediate form code;

10

15

20

25

30

35

40

45

50

65

10

generating a set of new instructions for the program that
contain numeric references resulting from invocation of
a routine to resolve any symbolic data references in the
set of original instructions; and

executing the program using the set of new instructions.

30. A computer-implemented method comprising:

receiving a program that comprises a set instructions

written in an intermediate form code;

replacing each instruction in the program with a symbolic

data reference with a new instruction containing a
numeric reference resulting from invocation of a
dynamic field reference routine fo resolve the symbolic
data reference; and

executing the program by performing an operation in

accordance with each instruction or new instruction,
depending upon whether an instruction has been
replaced with a new instruction in accordance with the
replacing step.

31. A data processing system, comprising:

a processor; and

a memory comprising a control program for causing the

processor to (i) receive a program that comprises a set
instructions written in an intermediate form code, (ii)
replace each instruction in the program with a sym-
bolic data reference with a new instruction containing
a numeric reference resulting from invocation of a
dynamic field reference routing ro resolve the symbolic
data reference, and (iii) execute the program by per-
forming an operation in accordance with each instruc-
tion or new instruction, depending upon whether an
instruction has been replaced with a new instruction in
accordance with the replacing step.

32. A computer program product containing control
instructions for causing a computer to perform a method, the
method comprising:

receiving a program that comprises a set instructions

written in an intermediate form code;

replacing each instruction in the program with a symbolic

data reference with a new instruction containing a
numeric reference resulting from invocation of a
dynamic field reference routine fo resolve the symbolic
data reference; and

executing the program by performing an operation in

accordance with each instruction or new instruction,
depending upon whether an instruction has been
replaced with a new instruction in accordance with the
replacing step.

33. A computer-implemented method, comprising:

receiving a program with a set instructions wriften in an

intermediate form code;

analyzing each instruction of the program to determine

whether the instruction contains a symbolic reference
to a data object; and

executing the program, wherein when it was determined

that an instruction contains a symbolic reference, data
from a storage location identified by a numeric refer-
ence corresponding to the symbolic reference is used
thereafter to perform an operation corresponding to
that instruction.

34. A data processing system, comprising:

a processor; and

a memory comprising a control program for causing the

processor to (i) receive a program with a set instruc-
tions written in an intermediate form code, (i) analyze
each instruction of the program fo determine whether

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagell4 of 161

US RE38,104 E

11

the instruction contains a symbolic reference to a data
object, and (iii) execute the program, wherein when it
was determined that an instruction contains a symbolic
reference, data from a storage location identified by a
numeric reference corresponding to the symbolic ref-
erence is used theredafter to perform an operation
corresponding to that instruction.
35. A computer program product containing control
instructions for causing a computer to perform a method, the
method comprising:

receiving a program with a set instructions written in an
intermediate form code;

analyzing each instruction of the program fo determine
whether the instruction contains a symbolic reference
to a data object; and

executing the program, wherein when it was determined
that an instruction contains a symbolic reference, data
from a storage location identified by a numeric refer-
ence corresponding to the symbolic reference is used
thereafter fo perform an operation corresponding ro
that instruction.

36. A computer-implemented method for executing a

program comprised of bytecodes, the method comprising:

determining whether a bytecode of the program contains
a symbolic reference;

when it is determined that the bytecode contains a sym-
bolic reference, invoking a dynamic field reference
routine to resolve the symbolic reference; and

performing an operation identified by the bytecode there-
after using data from a storage location identified by a
numeric reference resulting from the invocation of the
dynamic field reference routine.

37. A data processing system, comprising:

a processor; and

a memory comprising a program comprised of bytecodes
and instructions for causing the processor to (i) deter-
mine whether a bytecode of the program contains a
symbolic reference, (ii) when it is determined that the
bytecode contains a symbolic reference, invoke a
dynamic field reference routine fo resolve the symbolic
reference, and (iif) perform an operation identified by
the bytecode thereafter using data from a storage
location identified by a numeric reference resulting
from the invocation of the dynamic field reference
roufine.

38. A computer program product containing instructions

for causing a computer to perform a method for executing a
program comprised of bytecodes, the method comprising:

10

15

20

25

30

35

40

12

determining whether a bytecode of the program contains
a symbolic reference;

when it is determined that the bytecode contains a sym-
bolic reference, invoking a dynamic field reference
routine to resolve the symbolic reference; and

performing an operation identified by the bytecode
therafter using data from a storage location identified
by a numeric reference resulting from the invocation of
the dynamic field reference routine.

39. A computer-implemented method comprising:
receiving a program formed of instructions wriften in an
intermediate form code compiled from source code;
analyzing each instruction to determine whether it con-

tains a symbolic field reference; and

executing the program by performing an operation iden-

tified by each instruction, wherein data from a storage
location identified by a numeric reference is thereafter
used for the operation when the instruction contains a
symbolic field reference, the numeric reference having
been resolved from the symbolic field reference.

40. A data processing system, comprising:

a processor; and

a memory comprising a control program for causing the

processor to (i) receive a program formed of instruc-
tions written in an intermediate form code compiled
from source code, (i) analyze each instruction fto
determine whether it contains a symbolic field
reference, and (iii) execute the program by performing
an operation identified by each instruction, wherein
data from a storage location identified by a numeric
reference is thereafter used for the operation when the
instruction contains a symbolic field reference, the
numeric reference having been resolved from the sym-
bolic field reference.

41. A computer program product containing control
instructions for causing a computer to perform a method, the
method comprising:

receiving a program formed of instructions wriften in an

intermediate form code compiled from source code;
analyzing each instruction to determine whether it con-
tains a symbolic field reference; and

executing the program by performing an operation iden-

tified by each instruction, wherein data from a storage
location identified by a numeric reference is used
thereafter for the operation when the instruction con-
tains a symbolic field reference, the numeric reference
having been resolved from the symbolic field reference.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagell5 of 161

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :RE38,104E Page 1 of 2
DATED : April 29, 2003
INVENTOR(S) :James Gosling

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title Page,
Item (57), ABSTRACT,

Line 24, please replace "interaction in" with -- instruction is --.

Column 6

Line 15, please replace "interleaving" with -- interleavingly --.
Line 18, after "wherein", please insert a comma.

Line 23, after "counter", please insert a semicolon.

Line 25, please replace "said ¢)" with -- said step c) --.

Column 7
Lines 3-4, please replace "and program execution" with -- said program execution --.
Lines 38, 41 and 45, please replace " 3" with -- 13 --,

Column 8
Lines 20-33, delete the claim in its entirety and insert therefore:

--20. A computer-implemented method for executing a compiled program containing
instructions in an intermediate form code, at least one of the instructions containing a symbolic
reference, said method comprising the steps of:

resolving the symbolic reference in the instruction by determining a numerical
reference corresponding to the symbolic reference; and

performing an operation in accordance with the instruction and data obtained in
accordance with the numerical reference without recompiling the program or any portion

thereof.--.

Lines 34-47, delete the claim in its entirety and insert therefore:

--21. A memory encoded with a compiled program, the memory comprising:

intermediate form code containing symbolic field references associated with an
intermediate representation of source code for the program,

the intermediate representation having been generated by lexically analyzing the
source code and parsing output of said lexical analysis,

such that when the program is executed by a processor each symbolic field
reference is resolved by determining a numerical reference corresponding to the symbolic field
reference and data is obtained in accordance with the numerical reference without recoﬁpiling

the program or any portion thereof.--.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagell6 of 161

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :RE38,104E Page 2 of 2
DATED : April 29, 2003
INVENTOR(S) :James Gosling

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 8, line 60 - Column 9, line 4,
Delete the claim in its entirety and insert therefore:

-- 23. A computer-readable medium containing instructions for controlling a data
processing system to perform a method for interpreting a compiled program in intermediate
form object code comprised of instructions, at least one of the instructions containing a symbolic
reference, said method comprising the steps of:

resolving the symbolic reference in the instruction by determining a numerical

reference corresponding to the symbolic reference; and

performing an operation in accordance with the instruction and data obtained in
accordance with the numerical reference without recompiling the program or any portion

thereof. --.

Column 10

Lines 7, 23-24, 37, 50 and 65-66, please replace "a set instructions" with -- a set of
instructions --.

Line 28, please replace "routing" with -- routine --.

Column 11
Line 11, please replace "a set instructions" with -- a set of instructions --.

Column 12
Line 7, please replace "therafter" with -- thereafter --.

Signed and Sealed this

Sixteenth Day of September, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagell7 of 161

EXHIBIT F

casesermmeerte ol I N ATArRn A

US006910205B2
a» United States Patent (o) Patent No.: US 6,910,205 B2
Bak et al. 45) Date of Patent: *Jun. 21, 2005
(54) INTERPRETING FUNCTIONS UTILIZING A 5,905,895 A 5/1999 Halter
HYBRID OF VIRTUAL AND NATIVE 5925123 A 771999 Tremblay et al.
MACHINE INSTRUCTIONS 5,953,736 A 9/1999 O’Conner et al.
5,995,754 A * 11/1999 Holzle et al. 717/158
(75) Inventors: Lars Bak, Palo Alto, CA (US); Robert 6,038,394 A 3/2000 Layes
Griesemer, Menlo Park, CA (US) (Continued)
(73) Assignee: Sun Microsystems, Inc., Santa Clara, OTHER PUBLICATIONS
CA(US) Proebsting, Todd A., “Optimizing an ANSI C Interpreter
(*) Notice: Subject to any disclaimer, the term of this Wlt,h hSupfl:roperatorsfl pp'l 3%2_332’ Jan. ;995' . d
patent is extended or adjusted under 35 Hsieh, C eng—Hsue etal, Java Byteco eto Native Code
U.S.C. 154(b) by 175 days. Translation: The caffeine prototype and preliminary results,”
pp- 90-97, Dec. 1996.
. Lambright, H. Dan., “Java Bytecode Optimizations,” pp.
This patent is subject to a terminal dis- 206-210, Feb. 1997.
claimer. Pittan Thomas, “Two—level Hybrid Interpreter/Native Code
Execution for combined space time program efficiency,”
(21) Appl. No.: 10/194,040 ACM, pp. 150-152, Jun. 1987.
_ Kaufer, Stephen et al.,, “Saber—C, An Interpreter—based
(22) Filed: Jul. 12, 2002 programming environment for the C language,” USENIX,
(65) Prior Publication Data pp. 161-171, Jun. 1988.
Davidson, Jack W. et al., “Cint: A RISC Interpreter for the
US 2002/0184399 Al Dec. 5, 2002 C programming language,” ACM, pp. 189-198, Jun. 1987.
Related U.S. Application Data Primary Examiner—Lewis A. Bullock, Jr.
o o (74) Attorney, Agent, or Firm—Beyer Weaver & Thomas
(63) Continuation of application No. 08/884,856, filed on Jun. LLP
30, 1997, now Pat. No. 6,513,156.
(51) Int.CL7 oo GOGF 9/45; GOGF 9455 ©7) ABSTRACT
(52) US.CL ... 717/151; 717/159; 717/148,; Systems and methods for increasing the execution speed of
717/139; 718/1 virtual machine instructions for a function are provided. A
(58) Field of Searchc.cccocooveeiiene. 717/151, 159, portion of the virtual machine instructions of the function
717/139, 148; 718/1 are compiled into native machine instructions so that the
. function includes both virtual and native machine instruc-
(56) References Cited tions. Execution of the native machine instructions may be

U.S. PATENT DOCUMENTS

5,329,611 A 7/1994 Pechanek et al.
5,367,685 A 11/1994 Gosling
5,586,328 A 12/1996 Caron et al.
5,758,162 A 5/1998 Takayama et al.
5,768,593 A 6/1998 Walters et al.
5,845,298 A 12/1998 O’Conner et al.
5,898,850 A 4/1999 Dickol et al.

accomplished by overwriting a virtual machine instruction
of the function with a virtual machine instruction that
specifies execution of the native machine instructions.
Additionally, the original virtual machine instruction may be
stored so that the original virtual machine instructions can be
regenerated.

14 Claims, 12 Drawing Sheets

JAVAVIRTUAL
Hi
INSTRUCTIONS

MODIFIED JAVA
VIRTUAL

MACHINE
INSTRUCTIONS

SNIPPET ZONE

BYTEGODE 1

SYTECODE B
BYTECODE M

BYTECODE 1
GO_NATIVE SN
BYTECODE 3
BYTECOOE 4
BYTECODE S
BYTECODES

BYTECODEM

[MANAGEMENT
iNFO

§ :

NATIVE MACHINE
INSTRUGTION(S)

203

HYBRID VIRTUAL
AND NATIVE

INSTRUCTIONS

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagell9 of 161

US 6,910,205 B2

Page 2
U.S. PATENT DOCUMENTS 6,292,883 B1 * 9/2001 Augusteijn et al. 712/209
] 6,332,216 B1 12/2001 Manjunath
6,044,220 A 3/2000 Breternitz 6,349.377 B1 * 2/2002 LindWercccocoo...... 712/22

6,118,940 A 9/2000 Alexander et al.
6,170,083 Bl 1/2001 Adl-Tabatabai * cited by examiner

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel20 of 161

U.S. Patent Jun. 21, 2005 Sheet 1 of 12 US 6,910,205 B2

15

0
Yy~
9
FIG. 1
o 1
F51 /.53 /.55 /. 57
FIXED REMOVABLE
PROCESSOR MEMORY STORAGE STORAGE
/ 67
< 'y y Y ? >
I KSQ /.61
DISPLAY SOUND
ADAPTER CARD
A N
3 9 1 63 i 65
Y / Y / A 4 K Y /‘ /—
NETWORK
DISPLAY KEYBOARD MOUSE SPEAKERS INTERFACE

FIG. 2

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel2l of 161

U.S. Patent Jun. 21, 2005 Sheet 2 of 12 US 6,910,205 B2
INPUTS/ EXECUTING

OUTPUTS SOFTWARE/SYSTEMS
]
101 :
\ :
|
|
|
JAVA SOURCE CODE !
|
|

public class HelloWorld {

pulbic static void main (String args()) { / 103
System.out.printin("Hello World!"); :
} |
} | BYTECODE
! COMPILER
|
{
105
—~ :
i
1
JAVA CLASS FILE !
:
|
CA FE BA BE 00 03 00 2D 00 20 08 00 1D ' ‘07
07 00 OE 07 00 16 00 07 00 1E 07 00 1C /
09 ... 00 02 00 18
JAVA VIRTUAL
MACHINE

(INTERPRETER)

FIG. 3

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel22 of 161

U.S. Patent

Jun. 21, 2005 Sheet 3 of 12

HIGH LEVEL
FLOW

INPUT VIRTUAL MACHINE
INSTRUCTIONS

SELECT A PORTION OF THE
FUNCTION TO COMPILE

A 4

COMPILE THE PORTION OF THE
FUNCTION INTO NATIVE MACHINE
INSTRUCTION(S)

SAVE THE INITIAL ORIGINAL
VIRTUAL MACHINE INSTRUCTION(S)
OF THE SELECTED PORTION OF
THE FUNCTION

Y

OVERWRITE THE INITIAL VIRTUAL
MACHINE INSTRUCTION(S) WITH A
VIRTUAL MACHINE INSTRUCTION
SPECIFYING EXECUTION OF THE
NATIVE MACHINE INSTRUCTION(S)

Come)

FIG. 4

201

203

205

207

209

US 6,910,205 B2

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel23 of 161

U.S. Patent

JAVA VIRTUAL
MACHINE
INSTRUCTIONS

BYTECODE 1
BYTECODE 2
BYTECODE 3
BYTECODE 4
BYTECODE 5
BYTECODE 6

BYTECODEM

\ 301

Jun. 21, 2005

Sheet 4 of 12

US 6,910,205 B2

MODIFIED JAVA
VIRTUAL
MACHINE

INSTRUCTIONS

BYTECODE 1
GO_NATIVE #N
BYTECODE 3
BYTECODE 4
BYTECODE 5
BYTECODE 6

BYTECODE M

SNIPPET ZONE

MANAGEMENT
INFO

NATIVE MACHINE
INSTRUCTION(S)

/ 307

k 303

HYBRID VIRTUAL
AND NATIVE
MACHINE
INSTRUCTIONS

k 305

FIG. 5

Case4:10-cv-03561-LB Documentl Filed08/12/10

U.S. Patent

Jun. 21, 2005 Sheet 5 of 12

INTRODUCTION
OF SNIPPETS

Y

ALLOCATE A FREE SNIPPET IN
SNIPPET ZONE

A

COMPILE VIRTUAL MACHINE
INSTRUCTION(S) INTO NATIVE
MACHINE INSTRUCTION(S)

h 4

SAVE ORIGINAL VIRTUAL MACHINE
INSTRUCTION IN MANAGEMENT
INFO OF ALLOCATED SNIPPET

A 4

SAVE ADDRESS OF ORIGINAL
VIRTUAL MACHINE INSTRUCTION IN
MANAGEMENT INFO OF
ALLOCATED SNIPPET

Y

OVERWRITE ORIGINAL VIRTUAL
MACHINE INSTRUCTION WITH NEW
VIRTUAL MACHINE INSTRUCTION
THAT POINTS TO ALLOCATED
SNIPPET

Ve

A

EXECUTE NEW VIRTUAL MACHINE
INSTRUCTION

A 4

o)

FIG. 6

Pagel24 of 161

US 6,910,205 B2

401

403

405

407

409

411

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel25 of 161

U.S. Patent Jun. 21, 2005 Sheet 6 of 12 US 6,910,205 B2

ALLOCATE SNIPPE
Q\l SNIPPET ZON;

A 4 -~ 501
GET CURRENT SNIPPET
503
IS SNIPPET
FREE?
NO
YES v -~ 505
REMOVE THE CURRENT SNIPPET
\ 507
SET ALLOCATED SNIPPET EQUAL |

TO CURRENT SNIPPET

l 509

INCREMENT SNIPPET POINTER /—

(ooxe)

FIG. 7

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel26 of 161

U.S. Patent

Jun. 21, 2005 Sheet 7 of 12

EXECUTE
GO_NATIVE

US 6,910,205 B2

GET SNIPPET INDEX

601
/

COMPUTE SNIPPET ENTRY POINT

603
/’

JUMP TO SNIPPET ENTRY POINT

605
/

l

EXECUTE NATIVE MACHINE
INSTRUCTION(S) IN SNIPPET

607
-~

(o)

FIG. 8

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel27 of 161

U.S. Patent Jun. 21, 2005 Sheet 8 of 12

REMOVAL OF
SNIPPET

h 4

US 6,910,205 B2

REPLACE GO_NATIVE BYTECODE
AT ADDRESS IN MANAGEMENT
INFO WITH ORIGINAL BYTECODE
ALSO IN MANAGEMENT INFO

701
/

|

MARK SNIPPET IN SNIPPET ZONE
AS FREE

703
a

|
(=

FIG. 9

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel28 of 161

U.S. Patent Jun. 21, 2005 Sheet 9 of 12 US 6,910,205 B2

INVOKE_VIRTUAL BYTECOD

l

GENERATE NATIVE MACHINE
INSTRUCTION FOR
E

/ 801
FIND SPECIFIED FUNCTION
l /- 803
RECEIVE POINTER TO SPECIFIED
FUNCTION
l / 805

GENERATE NATIVE MACHINE
INSTRUCTIONS FOR CALLING THE
SPECIFIED FUNCTION

l
oo)

FIG. 10

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel29 of 161

U.S. Patent Jun. 21, 2005 Sheet 10 of 12 US 6,910,205 B2

EXECUTE SNIPPET CODE FOR
@VOKE_VIRTUAL BYTECOD;

A 4 /— 901

SAVE BYTECODE POINTER

\ 903
/
PUSH INTERPRETER RETURN
ADDRESS

4 / 905

JUMP TO VIRTUAL FUNCTION

v 907
/

VIRTUAL FUNCTION RETURNS TO
PUSHED RETURN ADDRESS

909
/‘

RELOAD SAVED BYTECODE
POINTER

! - 911

INCREMENT THE BYTECODE
POINTER

A

C bONE)

FIG. 11

Case4:10-cv-03561-LB Docu

U.S. Patent Jun. 21, 2005

GENERATE SNIPPET CODE
FOR ARBITRARY SEQUENCE

4

mentl Filed08/12/10 Pagel30 of 161

Sheet 11 of 12

STORE STARTING BYTECODE
POINTER

1001
/

\

SET CURRENT BYTECODE
POINTER EQUAL TO STARTING
BYTECODE POINTER

— 1003
/'

A

GET CURRENT BYTECODE

1005
/

1007

DOES SNIPPET
HUNK HAVE ENOUG
ROOM TO STORE THE
SNIPPET CODE AND
CONTINUATION
CODE?

IS STOP SNIPPET
FLAG IN BYTECODE
TABLE SET?

NO

1015
/

US 6,910,205 B2

EMIT NATIVE CODE TO
—» INCREMENT THE BYTECODE
POINTER
YES

EMIT CONTINUATION CODE

\1017
< DONE

EMIT BYTECODE SPECIFIC
SNIPPET CODE

1011
/

\

ADVANCE CURRENT
BYTECODE POINTER

1013
/‘

FIG. 12

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel3l of 161

US 6,910,205 B2

Sheet 12 of 12

Jun. 21, 2005

U.S. Patent

€901

|

el old
3LVIdW3L
JAVIdNAL 4// sIA £ ALY 09 20z
T~ S3A G BOV4HIALINI INOANI 58l
S3A € DILVLS INOANI 8l
-~ | S3A ¢ | IvID3dS_IMOANI £81
3LV IdWaL - [INIHOVIN S3IA € | TVNLYIA TIOANI 28l
3AILYN -~
P anv ON ¢ OILVIS_1Nd 6LL
\ NOIS3A ON € OILV1S 139 8.l
o
JIVIdAN3L \t SaAINVAL ON b dON 0
\ 3009
371S 3000 | L3ddINS
31V IdWEL 13ddINS | T s O1S EPAIS ANVYN 30003LA8
Ol ¥l1d
(3000 13ddINS) 68\ 590 r\ %S\ BE\ 550 r\ mmo,\

319vL J1VIdA3L

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel32 of 161

US 6,910,205 B2

1
INTERPRETING FUNCTIONS UTILIZING A
HYBRID OF VIRTUAL AND NATIVE
MACHINE INSTRUCTIONS

This is a Continuation application of prior application
Ser. No. 08/884,856 filed on Jun. 30, 1997, now U.S. Pat.
No. 6,513,156 the disclosure of which is incorporated herein
by reference.

BACKGROUND OF THE INVENTION

The present invention relates to increasing the execution
speed of interpreters and, more specifically, increasing the
speed of an interpreter executing a Java™ function utilizing
a hybrid of virtual and native machine instructions.

The computer era began back in the early 1950s with the
development of the UNIVAC. Today, there are countless
numbers of computers and computer platforms. Although
the variety of computers is a blessing for users, it is a curse
for programmers and application developers who have the
unfortunate task of modifying or porting an existing com-
puter program to run on a different computer platform.

One of the goals of high level languages is to provide a
portable programming environment such that the computer
programs may be easily ported to another computer plat-
form. High level languages such as “C” provide a level of
abstraction from the underlying computer architecture and
their success is well evidenced from the fact that most
computer applications are now written in a high level
language.

Portability has been taken to new heights with the advent
of World Wide Web (“the Web”) which is an interface
protocol for the Internet which allows communication of
diverse computer platforms through a graphical interface.
Computers communicating over the Web are able to down-
load and execute small applications called applets. Given
that applets may be executed on a diverse assortment of
computer platforms, the applets are typically executed by a
Java™ virtual machine.

The Java™ programming language is an object-oriented
high level programming language developed by Sun Micro-
systems and designed to be portable enough to be executed
on a wide range of computers ranging from small personal
computers up to supercomputers. Java programs are com-
piled into class files which include virtual machine instruc-
tions (e.g., bytecodes) for the Java virtual machine. The Java
virtual machine is a software emulator of a “generic” com-
puter. An advantage of utilizing virtual machine instructions
is the flexibility that is achieved since the virtual machine
instructions may be run, unmodified, on any computer
system that has a virtual machine implementation, making
for a truly portable language. Additionally, other program-
ming languages may be compiled into Java virtual machine
instructions and executed by a Java virtual machine.

The Java virtual machine is an interpreter executed as an
interpreter program (i.e., software). Conventional interpret-
ers decode and execute the virtual machine instructions of an
interpreted program one instruction at a time during execu-
tion. Compilers, on the other hand, decode source code into
native machine instructions prior to execution so that decod-
ing is not performed during execution. Because conven-
tional interpreters decode each instruction before it is
executed repeatedly each time the instruction is
encountered, execution of interpreted programs is typically
quite slower than compiled programs because the native
machine instructions of compiled programs can be executed
on the native machine or computer system without neces-
sitating decoding.

10

20

25

30

35

40

45

50

55

60

65

2

A known method for increasing the execution speed of
Java interpreted programs of virtual machine instructions
involves utilizing a just-in-tine (JIT) compiler. The JIT
compiler compiles an entire Java function just before it is
called. However, native code generated by a JIT compiler
does not always run faster than code executed by an inter-
preter. For example, if the interpreter is not spending the
majority of its time decoding the Java virtual machine
instructions, then compiling the instructions with a JIT
compiler may not increase the execution speed. In fact,
execution may even be slower utilizing the JIT compiler if
the overhead of compiling the instructions is more than the
overhead of simply interpreting the instructions.

Another known method for increasing the execution
speed of Java interpreted programs of virtual machine
instructions utilizes “quick” instructions or bytecodes. The
“quick” instructions take advantage of the unassigned byte-
codes for the Java virtual machine. A “quick” instruction
utilizes an unassigned bytecode to shadow another bytecode.
The first time that the shadowed bytecode is encountered,
the bytecode is replaced by the “quick” bytecode which is a
more efficient implementation of the same operation.
Although “quick™ instructions have been implemented with
good results, their flexibility is limited since the number of
unassigned bytecodes is limited (and may decrease as new
bytecodes are assigned).

Accordingly, there is a need for new techniques for
increasing the execution speed of computer programs that
are being interpreted. Additionally, there is a need for new
techniques that provide flexibility in the way in which
interpreted computer programs are executed.

SUMMARY OF THE INVENTION

In general, embodiments of the present invention provide
innovative systems and methods for increasing the execution
speed of computer programs executed by an interpreter. A
portion of a function is compiled into at least one native
machine instruction so that the function includes both virtual
and native machine instructions during execution. With the
invention, the mechanism for increasing the execution speed
of the virtual machine instructions is transparent to the user,
the hybrid virtual and native machine instructions may be
easily transformed back to the original virtual machine
instructions, and the flexibility of compiling only certain
portions of a function into native machine instructions
allows for better optimization of the execution of the func-
tion. Several embodiments of the invention are described
below.

In one embodiment, a computer implemented method for
increasing the execution speed of virtual machine instruc-
tions is provided. Virtual machine instructions for a function
are input into a computer system. A portion of the function
is compiled into native machine instruction(s) so that the
function includes both virtual and native machine instruc-
tions. A virtual machine instruction of the function may be
overwritten with a new virtual machine instruction that
specifies the execution of native machine instructions that
were compiled from a sequence of virtual machine instruc-
tions beginning with the overwritten virtual machine instruc-
tion of the function. In preferred embodiments, the virtual
machine instructions are Java virtual machine instructions.

In another embodiment, a computer implemented method
for increasing the execution speed of virtual machine
instructions is provided. Java virtual machine instructions
for a function are input into a computer system. A portion of
the function is compiled into native machine instruction(s).

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel33 of 161

US 6,910,205 B2

3

A copy of a selected virtual machine instruction at a begin-
ning of the portion of the function is stored and a back
pointer to a location of the selected virtual machine instruc-
tion is also stored. The selected virtual machine instruction
is overwritten with a new virtual machine instruction that
specifies execution of the native machine instructions so that
the function includes both virtual and native machine
instructions. The new virtual machine instruction may
include a pointer to a data block in which is stored the native
machine instructions, the copy of the selected virtual
machine instruction, and the back pointer. Additionally, the
original virtual machine instructions that were input may be
generated by storing the copy of the selected virtual machine
instruction stored in the data block at the location specified
by the back pointer.

In another embodiment, a computer implemented method
of generating hybrid virtual and native machine instructions
is provided. A sequence of virtual machine instructions for
a function is input into a computer system. A virtual machine
instruction of the sequence of virtual machine instructions is
selected and the selected virtual machine instruction is
overwritten with a new virtual machine instruction that
specifies one or more native machine instructions. The new
virtual machine instruction may include a pointer to the one
or more native machine instructions which may be stored in
a data block. The one or more native machine instructions
may be generated from a compilation of a portion of the
sequence of virtual machine instructions beginning with the
selected virtual machine instruction.

Other features and advantages of the invention will
become readily apparent upon review of the following
detailed description in association with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a computer system that
may be utilized to execute the software of an embodiment of
the invention.

FIG. 2 shows a system block diagram of the computer
system of FIG. 1.

FIG. 3 shows how a Java source code program is
executed.

FIG. 4 shows a high level flowchart illustrating a process
of transforming a function into a hybrid of virtual and native
machine instructions in accordance with one embodiment of
the present invention.

FIG. 5 illustrates a transformation of Java virtual machine
instructions of a function to hybrid virtual and native
machine instructions.

FIG. 6 shows a process of introducing snippets which are
native machine instructions compiled from a sequence of
virtual machine instructions of a function.

FIG. 7 shows a process of allocating a snippet in the
snippet zone which stores all existing snippets.

FIG. 8 shows a process of executing a go_ native virtual
machine instruction that specifies the execution of native
machine instructions in a snippet.

FIG. 9 shows a process of removing a snippet from the
hybrid, virtual, and native machine instructions of a func-
tion.

FIG. 10 shows a process of generating native machine
instructions for the invoke_ virtual bytecode.

FIG. 11 shows a process of executing snippet code for the
invoke_ virtual bytecode.

FIG. 12 shows a process of generating snippet code for an
arbitrary sequence of virtual machine instructions in a
function.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 13 illustrates a bytecode table which may be utilized
to store information regarding different Java bytecodes.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS
Definitions

Machine instruction—An instruction that directs a com-
puter to perform an operation specified by an operation code
(OP code) and optionally one or more operand.

Virtual machine instruction—A machine instruction for a
software emulated microprocessor or computer architecture
(also called virtual code).

Native machine instruction—A machine instruction that
is designed for a specific microprocessor or computer archi-
tecture (also called native code).

Class—An object-oriented data type that defines the data
and methods that each object of a class will include.

Function—A software routine (also called a subroutine,
procedure, member and method).

Snippet—A relatively small piece of compiled native
machine instructions and associated information.

Bytecode pointer (BCP)—A pointer that points to the
current Java virtual machine instruction (e.g.,
bytecode) that is being executed.

Program counter (PC)—A pointer that points to the
machine instruction of the interpreter that is being
executed.

Overview

In the description that follows, the present invention will
be described in reference to a preferred embodiment that
increases the execution speed of Java virtual machine
instructions. However, the invention is not limited to any
particular language, computer architecture, or specific
implementation. As an example, the invention may be
advantageously applied to languages other than Java (e.g.,
Smalltalk). Therefore, the description of the embodiments
that follow is for purposes of illustration and not limitation.

FIG. 1 illustrates an example of a computer system that

may be used to execute the software of an embodiment of
the invention. FIG. 1 shows a computer system 1 which
includes a display 3, screen 5, cabinet 7, keyboard 9, and
mouse 11. Mouse 11 may have one or more buttons for
interacting with a graphical user interface. Cabinet 7 houses
a CD-ROM drive 13, system memory and a hard drive (see
FIG. 2) which may be utilized to store and retrieve software
programs incorporating computer code that implements the
invention, data for use with the invention, and the like.
Although the CD-ROM 15 is shown as an exemplary
computer readable storage medium, other computer readable
storage media including floppy disk, tape, flash memory,
system memory, and hard drive may be utilized.
Additionally, a data signal embodied in a carrier wave (e.g.,
in a network including the Internet) may be the computer
readable storage medium.

FIG. 2 shows a system block diagram of computer system

1 used to execute the software of an embodiment of the
invention. As in FIG. 1, computer system 1 includes monitor
3 and keyboard 9, and mouse 11. Computer system 1 further
includes subsystems such as a central processor 51, system
memory 53, fixed storage 55 (e.g., hard drive), removable
storage 57 (e.g., CD-ROM drive), display adapter 59, sound
card 61, speakers 63, and network interface 65. Other
computer systems suitable for use with the invention may
include additional or fewer subsystems. For example,
another computer system could include more than one
processor 51 (i.e., a multi-processor system), or a cache
memory.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel34 of 161

US 6,910,205 B2

5

The system bus architecture of computer system 1 is
represented by arrows 67. However, these arrows are illus-
trative of any interconnection scheme serving to link the
subsystems. For example, a local bus could be utilized to
connect the central processor to the system memory and
display adapter. Computer system 1 shown in FIG. 2 is but
an example of a computer system suitable for use with the
invention. Other computer architectures having different
configurations of subsystems may also be utilized.

Typically, computer programs written in the Java pro-
gramming language are compiled into bytecodes or Java
virtual machine instructions which are then executed by a
Java virtual machine. The bytecodes are stored in class files
which are input into the Java virtual machine for interpre-
tation. FIG. 3 shows a progression of a simple piece of Java
source code through execution by an interpreter, the Java
virtual machine.

Java source code 101 includes the classic Hello World
program written in Java. The source code is then input into
a bytecode compiler 103 which compiles the source code
into bytecodes. The bytecodes are virtual machine instruc-
tions as they will be executed by a software emulated
computer. Typically, virtual machine instructions are generic
(ie., not designed for any specific microprocessor or com-
puter architecture) but this is not required. The bytecode
compiler outputs a Java class file 105 which includes the
bytecodes for the Java program.

The Java class file is input into a Java virtual machine 107.
The Java virtual machine is an interpreter that decodes and
executes the bytecodes in the Java class file. The Java virtual
machine is an interpreter, but is commonly referred to as a
virtual machine as it emulates a microprocessor or computer
architecture in software (e.g., the microprocessor or com-
puter architecture that may not exist).

An interpreter may execute a bytecode program by repeat-
edly executing the following steps:

Execute—execute operation of the current bytecode

Advance—advance bytecode pointer to next bytecode

Dispatch—fetch the bytecode at the bytecode pointer and
jump to the implementation (i.e., execute step) of that
bytecode.

The execute step implements the operation of a particular
bytecode. The advance step increments the bytecode pointer
so that it points to the next bytecode. Lastly, the dispatch
step fetches the bytecode at the current bytecode pointer and
jumps to the piece of native machine code that implements
that bytecode. The execution of the execute-advance-
dispatch sequence for a bytecode is commonly called an
“interpretation cycle.”

Although in a preferred embodiment, the interpreter uti-
lizes the interpretation cycle described above. Many other
interpretation cycles may be utilized in conjunction with the
present invention. For example, an interpreter may perform
dispatch-execute-advance interpretation cycles or there may
be more or fewer steps in each cycle. Accordingly, the
invention is not limited to the embodiments described
herein.

Hybrid Virtual and Native Machine Instructions

In general, the speed in which a program is interpreted can
be increased by reducing the average time needed for an
interpretation cycle. The invention recognizes the fact that
on many modern computers the dispatch step is often the
most time consuming step. Accordingly, the advance and
dispatch steps of several bytecodes may be combined into a
single advance and dispatch step which significantly
decreases the execution time needed for such a bytecode
sequence.

10

20

25

30

35

40

45

50

55

60

65

6

As an example, assume that the Java source code state-
ment X:=A+B was compiled into bytecodes represented by
the following instructions:

Load A

2. Load B

3. Add

4. Store X

The Java virtual machine is a stack based machine.
Therefore, after the values of A and B are loaded onto the
stack, these values are added and removed from the stack
with the result being placed on the stack. The result on the
stack is then stored in X and the result is removed from the
stack.

When the above virtual machine instructions are
interpreted, each of the execute, advance and dispatch steps
will take a certain amount of time which may vary from
instruction to instruction. Accordingly, the time it takes the
interpreter to execute an instruction will be the sum of the
time it takes to execute each of the execute, advance and
dispatch steps for that instruction. The time it takes to
execute a step will be represented by E,, for execute, A, for
advance and D,, for dispatch, where the subscript indicates
the number of the instruction to which the time is associated.

The time it takes the interpreter to execute the virtual
machine instructions shown above will be the sum of the
following times which may occur in this order: E;, A}, D,
E,,A,,D,, E5, A, Ds, E\, Ay, D,,. With an embodiment of
the present invention, a sequence of virtual machine instruc-
tions as shown above may be compiled into native machine
instructions in the form of a “snippet” so that all but the last
advance and dispatch steps may be removed.

As a snippet includes a sequence of native machine
instructions, the advance and dispatch steps between the
instructions may be eliminated. Therefore, the execution
time of the snippet will be approximately the sum of the
following times in this order: E, E,, E;, E,, A, Dg, where
the subscript “S” indicates these times represent the snippet
advance and dispatch steps which may be different than the
traditional advance and dispatch steps. Since the initial
advance and dispatch steps are no longer needed to advance
the bytecode pointer and fetch the next bytecode, the snippet
includes an optimized interpretation cycle for a sequence of
bytecodes while preserving interpreter semantics.
Conceptually, therefore, a snippet may be considered as an
implementation of a higher level bytecode that implements
the operations of a sequence of lower level bytecodes.

FIG. 4 shows a high level flowchart of a process of
generating a hybrid of virtual and native machine instruc-
tions for a function in accordance with one embodiment of
the present invention. At step 201, virtual machine instruc-
tions for a function are input into a computer system, such
as the ones shown in FIGS. 1 and 2. In preferred
embodiments, the virtual machine instructions for a function
are stored as a class file of bytecodes. However, the inven-
tion may be readily extended into other interpreted lan-
guages by an extension of the principles described herein.

A vportion of the virtual machine instructions of the
function is selected to be compiled at step 203. Typically, the
system recognizes individual bytecodes or sequences of
bytecodes that may be advantageously compiled. For
example, the system may generate a snippet for each Java
invoke virtual bytecode that is encountered. Since the
invoke_ virtual op code may be optimized when it is com-
piled into native machine instructions within a snippet (see
also the section entitled “In-line Caching”). Additionally,
statistics may be collected during the interpretation of a
program in order to identify portions of the program that
would benefit from having a snippet generated.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel35 of 161

US 6,910,205 B2

7

At step 205, the selected portion of the function is
compiled into one or more native machine instructions.
Although snippets usually include more than one native
machine instruction, the number of machine instructions is
dependent on the virtual machine instructions for which the
snippet is replacing.

The virtual machine instruction at the beginning of the
selected portion of the function is saved at step 207. It is not
required in all instances that the entire virtual machine
instruction be saved. For example, in some embodiments
only an initial portion (e.g., first one or more bytes) of a
virtual machine instruction are saved. Therefore, when it is
stated that a virtual machine instruction is saved, it should be
understood that it is meant that at least an initial portion of
the virtual machine instruction is saved. Furthermore, in
some embodiments more than one virtual machine instruc-
tion at the beginning of the selected portion of the function
may be saved. It will be readily understood by those of skill
in the art that the number of bytes or virtual machine
instructions that are saved (or overwritten) may be varied in
different embodiments and may depend on the virtual
machine instructions themselves.

In order for the snippet to be executed, a new virtual
machine instruction (called “go_native” in a preferred
embodiment) is executed which specifies the subsequent
execution of the snippet. This new virtual machine instruc-
tion replaces or overwrites the initial virtual machine
instruction of the selected portion of the function. So that the
original function or computer program may be restored, the
original virtual machine instruction at the beginning of the
selected portion is saved, at step 207, prior to being over-
written. This process will be described in more detail upon
reference to FIG. 5 which illustrates how Java virtual
machine instructions of a function may be transformed into
hybrid virtual and native machine instructions.

At step 209, the virtual machine instruction at the begin-
ning of the selected portion of the function is overwritten
with a new virtual machine instruction that specifies the
execution of the one or more native machine instructions of
the snippet. In the Java virtual machine, the virtual machine
instructions are bytecodes meaning that each virtual
machine instruction is composed of one or more bytes. The
examples described herein refer to preferred embodiments
which increase the execution speed of programs for the Java
virtual machine. However, the invention may be advanta-
geously applied to other interpreted languages where the
virtual machine instructions may not necessarily be byte-
codes.

During execution of an interpreted program, the inter-
preter decides when to substitute a sequence of bytecodes
with a snippet. In a preferred embodiment, if a sequence of
bytecodes which may be replaced by a snippet has been
found, the interpreter generates a snippet for the sequence
and then overwrites the first three bytes of that sequence
with a go_ native bytecode and a two byte number speci-
fying the snippet. The go_native bytecode is an unused
bytecode which is selected for use of the invention.

The snippet will not only hold the native machine
instructions, but also the three bytes of the original bytecode
that was overwritten as well as a pointer back to their
original location so that the snippet may be removed and the
original bytecodes restored.

FIG. 5 shows a generation of hybrid virtual and native
machine instructions. Java virtual machine instructions 301
are bytecodes where each bytecode may include one or more
bytes. The Java virtual machine instructions typically reside
in a Java class file as is shown in FIG. 3. In the example

10

15

20

25

30

35

40

45

50

55

60

65

8

shown, the interpreter decides to introduce a snippet for
bytecodes 2—-5 of virtual machine instructions 301. The
interpreter generates modified Java virtual machine instruc-
tions 303 by overwriting bytecode 2 with a go_ native
virtual machine instruction.

A snippet zone 305 stores snippets which include native
machine instructions. As shown, the go native bytecode
includes a pointer or index to a snippet 307. Each snippet is
a data block that includes two sections of which the first is
management information and the second is a sequence of
one or more native machine instructions. The management
information includes storage for the original bytecode 2
which was overwritten by the go_ native bytecode and also
the original address of bytecode 2 so that the original
bytecode sequence may be restored when the snippet is
removed. Typically, the management information section of
the snippet is of a fixed length so that the native machine
instructions may be easily accessed by a fixed offset.
Although snippet 307 is shown as occupying a single
“chunk” in snippet zone 305, snippets may also be allocated
that occupy more than one chunk of the snippet zone.

The native machine instruction section of snippet 307
includes native machine instructions for bytecodes 2-5 of
virtual machine instructions 301. Hybrid virtual and native
machine instructions 309 include the modified virtual
machine instructions and the snippets in the snippet zone.
When the interpreter executes the go_ native bytecode, the
interpreter will look up the snippet in the snippet zone
specified by the go_ native bytecode and then activate the
native machine instructions in the snippet.

The native machine instructions in the snippet perform the
same operations as if the bytecodes 2—5 would have been
interpreted. Afterwards, the interpreter continues with the
execution of bytecode 6 as if no snippet existed. The return
of execution in virtual machine instructions 301 is indicated
by the dashed arrow in hybrid virtual and native machine
instructions 309 shown in FIG. 5.

The go__ native bytecode references (e.g., has a pointer to)
the snippet and the snippet includes a reference to the
location of the go_native bytecode. The go_ native byte-
code in a preferred embodiment is 3 bytes long: one for the
go_native op code and two bytes for an index into the
snippet zone. The two-byte index allows for over 65,000
snippets in the snippet zone. Within the snippet management
information section is stored the address of the original
bytecode which is currently occupied by the go_ native
bytecode. This address is utilized to write the original
bytecode also stored in the management information section
back to its original location. Although a preferred embodi-
ment utilizes a three byte go_ native bytecode, there is no
requirement that this size be utilized. For example, any
number of bytes may be utilized or the size does not have to
be limited to byte boundaries.

Snippets should be introduced selectively because it takes
time to generate the snippets and because the snippets
consume memory space. In a preferred embodiment, snip-
pets are introduced for the following: all or portions of loop
bodies, special Java bytecodes (e.g., get_static and put__
static), and Java message sends (all the invokexxx
bytecodes). In the bytecodes for Java virtual machine, loops
are implemented using backward branches. Thus, whenever
the interpreter encounters a backward branch, it may intro-
duce a snippet. The snippet generator generates as much
native code that will fit into the snippet, starting with the
backward branch bytecode. Additionally, some special Java
bytecodes and Java message sends may be sped up by using
snippets.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel36 of 161

US 6,910,205 B2

9

FIG. 6 shows a process of introducing a snippet. At step
401, the system allocates a free snippet in the snippet zone.
The free snippet is storage space within the snippet zone
which has not been utilized or has been marked as available.
One process of allocating a free snippet will be described in
more detail in reference to FIG. 7.

Once a free snippet has been obtained, the one or more
virtual machine instructions are compiled into one or more
native machine instructions at step 403. Although the flow-
charts show an order to the steps, no specific ordering of the
steps should be implied from the figures. For example, it is
not necessary that a free snippet be allocated before the
virtual machine instructions are compiled into native
machine instructions. In fact, in some embodiments it may
be beneficial to compile the virtual machine instructions first
and then allocate a free snippet to store the native machine
instructions, especially if a snippet may span more than one
chunk in the snippet zone.

At step 405, a copy of a selected virtual machine instruc-
tion is saved in the management information section of the
allocated snippet. The selected virtual machine instruction is
the virtual machine instruction that was originally at the
beginning of the compiled virtual machine instructions of a
function. However, in some embodiments only an initial
portion (one or more bytes) of the original virtual machine
instruction is saved in the snippet. The address of the
original virtual machine instruction in the function is saved
in the management information section of the allocated
snippet at step 407.

At step 409, the original virtual machine instruction is
overwritten with a new virtual machine instruction (e.g.,
go__native) that points to the allocated snippet. As snippets
are generated during program execution, the new virtual
machine instruction is executed at step 411.

A snippet may be introduced at arbitrary locations in a
bytecode program. However, if the go_ native bytecode
spans across more than one of the original bytecodes it
should be verified that the second and subsequent original
bytecodes overwritten by the go_ native bytecode are not
jump targets or subroutine entry points. More generally, a
go__native bytecode should not be used across a basic block
entry point. Nevertheless, backward branches as well as
many other Java bytecodes are at least three bytes long,
thereby providing plenty of storage space for a go_ native
bytecode. It should be mentioned that a jump to a bytecode
after the go_ native bytecode which has been compiled into
a snippet will not present any problems since the bytecode
remains untouched at that location.

Snippets are held and managed in a separate memory
space called the snippet zone. The snippet zone may be
thought of as a circular list of snippets where a snippet is
allocated by either finding an unused snippet in the snippet
zone or by recycling a used snippet. Preferably all snippets
have the same size to simplify management of the snippet
zone. In general, the more snippets that are present in the
snippet zone, the longer it will take before a snippet has to
be recycled and therefore the faster the program will run.

Now that it has been shown how a snippet may be
introduced, FIG. 7 shows a process of allocating a snippet in
the snippet zone which was shown as step 401 in FIG. 6. The
process shown in FIG. 7 utilizes a round robin fashion to
allocate snippets (i.¢., as soon as a new snippet is needed and
there are no unused snippets left, the next snippet in the
circular list of snippets of the snippet zone is recycled).

At step 501, the system gets the current snippet. The
current snippet in the snippet zone is indicated by a snippet
pointer. The system determines if the current snippet is free

10

15

20

25

30

35

40

45

50

55

60

65

10

to be used at step 503. A flag may be present in the
management information section of the snippet to indicate
whether the snippet is available. In some embodiments, the
field in the management information section of the snippet
which stores the address of the original bytecode is set to
null if the snippet is available.

If the current snippet is not free, the current snippet is
removed at step 505. Removing the current snippet includes
writing the original bytecode stored in the management
information section of the snippet to the address of the
original bytecode also stored in the management section of
the snippet. A process of removing a snippet will be
described in more detail in reference to FIG. 9.

After a snippet has been allocated in the snippet zone, the
allocated snippet is set equal to the current snippet, at step
507, since now the current snippet is free. At step 509, the
system increments the snippet pointer. Although the snippet
zone may be thought of as a circular list, the snippet zone
may be implemented as an array of chunks. Therefore, if the
snippet zone is a linear array, incrementing the snippet
pointer may also involve resetting the snippet pointer to the
beginning of the snippet zone if the snippet pointer has
passed the end of the snippet zone.

Another approach to managing snippets in the snippet
zone is to use a time stamp that is stored in the management
information section of the snippet indicating the time when
the snippet was created or last used. Since it may take
substantial resources to find the snippet with the oldest time
stamp to be recycled, a combination of time stamps and the
round robin fashion may be utilized as follows.

When a free snippet is required, the system may search a
predetermined number of snippets after the snippet pointer
(e.g., 5 or 10 snippets) in order to locate a snippet with an
old time stamp. The snippet with the oldest time stamp near
the snippet pointer may then be recycled. Additionally, the
time stamp field in the management information section of
the snippet may be set to zero or an old time stamp in order
to mark the snippet as free.

Now that it has been shown how a snippet may be set up,
FIG. 8 shows a process of executing a go_ native bytecode.
At step 601, the system gets the snippet index or pointer
from the go_ native bytecode. The snippet index may be a 2
byte offset into the snippet zone. The system computes the
snippet entry point of the native machine instructions within
the snippet at step 603. The snippet entry point is the
location of the native machine instructions after the man-
agement information section of the snippet. Since the man-
agement information section is typically a fixed size, calcu-
lating the snippet entry point typically includes adding an
offset to the address of the snippet.

The system then jumps to the snippet entry point at step
605 in order to begin execution of the native machine
instructions of the snippet. The native machine instructions
in the snippet are executed in a step 607.

Although the implementation of snippets increases the
speed of execution of the interpreted code, it is also desirable
to provide the capability to reverse the introduction of
snippets in order to generate the original bytecodes. For
example, after a program in memory has executed, it may be
desirable to generate a listing of the original bytecodes
without requiring that the original class files be available for
access.

FIG. 9 shows a process of removing a snippet in order to
produce the original bytecodes. At step 701, the system
replaces the go_ native bytecode at the address stored in the
management information section of the snippet with the
original bytecode (or its initial bytes) also stored in the

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel37 of 161

US 6,910,205 B2

11

management information section. The address stored in the
management information section acts as a back pointer to
the original bytecode.

Once the original bytecodes are restored, the snippet may
be marked as free in the snippet zone at step 703. The
snippet may be marked free in any number of ways depend-
ing upon the implementation of the snippet zone. For
example, a null pointer may be stored in the address of the
original bytecode within the management information sec-
tion of the snippet. Additionally, if time stamps are being
utilized, the time stamp may be set to zero or an old value
in order to mark the snippet as free in the snippet zone.

The preceding has described how the invention utilizes
dynamically generated native machine instructions for
sequences of interpreted code so that a function may be more
efficiently executed utilizing a hybrid of virtual and native
machine instructions. The execution of an interpreted pro-
gram can be significantly sped up because frequently used
code sequences may be executed in native code rather than
an interpreted fashion. The snippets generated are transpar-
ent to the interpreter and impose no additional states or
complexity. The following will describe implementations of
specific virtual machine instruction situations.

In-Line Caching

In the Java virtual machine, the invoke virtual bytecode
is utilized to invoke “normal” functions. The invoke_ virtual
bytecode includes two bytes which, among other things,
specify a function to be invoked. During interpretation of the
invoke virtual bytecode, the interpreter first decodes and
executes the invoke_ virtual bytecode. The execution of the
invoke virtual bytecode involves fetching the two bytes
and determining the starting address of the specified func-
tion. However, the determination of the starting address of
the specified function may include following multiple levels
of pointers to find the class that includes the function.
Consequently, the interpretation of an invoke virtual byte-
code maybe be very time consuming.

Snippets may be utilized to expedite the execution of the
invoke_ virtual bytecode by compiling the invoke virtual
bytecode into the native machine instruction equivalent of
“call <function>" (i.e., the starting address of the function is
specified without requiring a time consuming search for the
starting address of the function). FIG. 10 shows a process of
generating a native machine instruction for the invoke
virtual bytecode.

At step 801, the system finds the function specified in the
invoke_ virtual bytecode. The process for finding the speci-
fied may be the same as is executed by an interpreter (e.g.,
pointers from class definitions will be followed to find the
specified function). Once the specified function is found, the
system receives a pointer or address to the specified virtual
function at step 803.

The system then generates native machine instructions for
calling the specified virtual function at step 805. The native
machine instructions include the address of the specified
function so that execution of the invoke virtual bytecode
will no longer necessitate the time consuming process of
finding the starting address of the specified function. By
“hard coding” the address of the desired function in native
machine instruction, there is a substantial increase in the
speed of execution of the invoke_ virtual bytecode.

Now that it has been described how the go native
bytecode for implementing the invoke virtual bytecode has
been set up, FIG. 11 shows a process of executing snippet
code for the invoke virtual bytecode. At step 901, the
system saves the current bytecode pointer so that the inter-
preter can continue at the right location after returning from
the function invoked by the invoke virtual bytecode.

10

15

20

25

30

35

40

45

50

55

60

65

12

The system pushes the interpreter return address on the
stack at step 903. The interpreter return address is a pre-
defined location where the execution of the interpreter from
invoke_virtual bytecodes should resume. The native
machine instructions in the snippet for the invoke_ virtual
function then instruct the system to jump to the function
specified in the invoke virtual bytecodes at step 905.

Once the virtual function finishes execution, the system
returns to the return address that was pushed on the stack at
step 907. At the return address, there are native machine
instructions for the interpreter to reload the saved bytecode
pointer. At step 909, recalling that the bytecode pointer was
saved at step 901, the system reloads the saved bytecode
pointer so the interpreter may continue where it left off. The
interpreter increments the bytecode pointer, at step 909, in
order to indicate the bytecode that should be interpreted
next.

As shown above, snippets may be utilized to increase the
execution performance of the invoke virtual bytecode.
Other Java bytecodes may be similarly optimized including
the invoke _static, invoke interface, and invoke special.
Arbitrary Sequences

As described earlier, snippets may be generated for arbi-
trary sequences of virtual machine instructions. The arbi-
trary sequences of virtual machine instructions may be
selected any number of ways including a statistical analysis
that determines execution speed will be increased upon
snippetization of the identified sequence of virtual machine
instructions.

FIG. 12 shows a process for generating snippet code for
an arbitrary sequence of virtual machine instructions. At step
1001, the system stores the starting bytecode pointer. The
starting bytecode pointer indicates the first bytecode that is
represented by the snippet that will be generated. At step
1003, the system sets the current bytecode pointer equal to
the starting bytecode pointer. The current bytecode pointer
will be utilized to “walk through” the bytecodes as they are
compiled and placed in the snippet. The system gets the
current bytecode at step 1005. The current bytecode is
specified by the current bytecode pointer.

At step 1007, the system determines if the snippet has
enough room to store the snippet code for the current
bytecode and some continuation code. The continuation
code is the native machine instructions that implement the
equivalent of the advance and fetch steps in the interpreta-
tion cycle. If the snippet chunk has enough room, the system
determines if a stop snippet flag is set in the bytecode table
at step 1009. The bytecode table is a table maintained by the
system to store information about the various bytecodes.
This table is shown in FIG. 13 and will be described in more
detail later but for the purposes of this flowchart the byte-
code table includes a flag which is set in the table for each
bytecode to indicate to the system that upon encountering
the bytecode, snippet generation should terminate.

At step 1011, the system emits snippet code (e.g., native
machine instructions) specific for the current bytecode. The
bytecode specific snippet code may also be stored in the
bytecode table as shown in FIG. 13. The system advances
the current bytecode pointer at step 1013, and then returns
to step 1005 to get the next bytecode to analyze.

If snippet generation is to be terminated, the system emits
native machine instructions to increment the bytecode
pointer at step 1015. The bytecode pointer should be incre-
mented by the number of byte used by the bytecodes which
were placed in the snippet. The system then emits the
continuation code at step 1017. The continuation code is
native machine instructions that jump to the address of the

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel38 of 161

US 6,910,205 B2

13

interpreter that interprets the next bytecode. The continua-
tion code may be the same for some bytecodes.

FIG. 13 shows a bytecode table that may be utilized to
store information regarding different Java bytecodes. A
bytecode table 1051 includes information regarding each of
the bytecodes of the virtual machine instructions. In a
preferred embodiment, the bytecode table is generated once
when the Java virtual machine is initialized. As shown, a
bytecode value 1053 (shown in decimal), name of the
bytecode 1055 and size of the bytecode 1057 (number of
bytes it occupies) are stored in the bytecode table.
Additionally, a stop snippet flag 1059 as described in ref-
erence to FIG. 12 indicates whether the bytecode should
terminate snippet generation when it is encountered.

The bytecode table may include a pointer to snippet code
1061 for each bytecode to which native machine instructions
will be generated. Thus, as shown, a template table 1063
may be utilized to store templates for the native machine
instructions for each bytecode. The template table allows for
fast generation of snippets as the native machine instructions
for the bytecodes may be easily determined upon reference
to template table 1063. Additionally, the templates of native
machine instructions may also be used to interpret the
bytecodes. Another column in bytecode table 1051 may
indicate a snippet code size 1065 of the template in the
template table.

CONCLUSION

While the above is a complete description of preferred
embodiments of the invention, there is alternatives,
modifications, and equivalents may be used. It should be
evident that the invention is equally applicable by making
appropriate modifications to the embodiments described
above. For example, the embodiments described have been
in reference to increasing the performance of the Java virtual
machine interpreting bytecodes, but the principles of the
present invention may be readily applied to other systems
and languages. Therefore, the above description should not
be taken as limiting the scope of the invention which is
defined by the metes and bounds of the appended claims
along with their full scope of equivalents.

What is claimed is:

1. In a computer system, a method for increasing the
execution speed of virtual machine instructions at runtime,
the method comprising:

receiving a first virtual machine instruction;

generating, at runtime, a new virtual machine instruction
that represents or references one or more native instruc-
tions that can be executed instead of said first virtual
machine instruction; and

executing said new virtual machine instruction instead of
said first virtual machine instruction.

2. The method of claim 1, further comprising overwriting
a selected virtual machine instruction with a new virtual
machine instruction, the new virtual machine instruction
specifying execution of the at least one native machine
instruction.

3. The method of claim 2, wherein the new virtual
instruction includes a pointer to the at least one native
machine instruction.

10

15

20

25

35

40

45

50

55

60

14

4. The method of claim 2, further comprising storing the
selected virtual machine instruction before it is overwritten.

5. The method of claim 2, further comprising storing a
back pointer to a location of the new virtual machine
instruction.

6. The method of claim 2, wherein the new virtual
machine instruction includes a pointer to a data block in
which is stored the at least one native machine instruction,
a copy of the selected virtual machine instruction, and a back
pointer to location of the new virtual machine instruction.

7. The method of claim 6, further comprising generating
the virtual machine instruction that were input by storing the
copy of the selected virtual machine instruction stored in the
data block at the location specified by the back pointer.

8. In a computer system, a method for increasing the
execution speed of virtual machine instructions, the method
comprising:

inputting virtual machine instructions for a function;

compiling a portion of the function into at least one native

machine instruction so that the function includes both
virtual and native machine instruction;

representing said at least one native machine instruction

with a new virtual machine instruction that is executed
after the compiling of the fuction.

9. A stored data structure of hybrid virtual and native
machine instructions, comprising:

a sequence of virtual machine instructions for a function

including a new virtual machine instruction;

at least one native machine instruction specified by the

new virtual machine instruction for execution with the
sequence of virtual machine instructions; and

a computer readable medium that stores the sequence of

virtual machine instructions and the at least one native
machine instruction;
wherein

the at least one native machine instruction is stored in
a data block, and

the data block stores a copy of a selected virtual
machine instruction that was overwritten in the
sequence of virtual machine instructions by the new
virtual machine instruction.

10. The stored data structure of claim 9, wherein the new
virtual machine instruction includes a pointer to the at least
one native machine instruction.

11. The stored data structure of claim 9, wherein the block
stores a pointer to a location of the new virtual machine
instruction in the sequence of virtual machine instructions.

12. The stored data structure of claim 9, wherein the data
block is stored in an array of blocks.

13. The stored data structure of claim 9, wherein the at
least one native machine instruction is generated from a
compilation of a portion of the sequence of virtual machine
instructions beginning with the selected virtual machine
instruction.

14. The stored data structure of claim 9, wherein the
virtual machine instruction are Java virtual machine instruc-
tions.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel39 of 161

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,910,205 B2 Page 1 of 1
DATED : June 21, 2005
INVENTOR(S) : Baketal

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 13
Line 59, change "new virtual" to -- new virtual machine --.

Column 14
Lines 13 and 58, change "machine instruction" to -- machine instructions --.
Line 25, change "the fuction" to -- the function --.

Signed and Sealed this

Sixth Day of September, 2005

o W D

JON W. DUDAS
Director of the United States Patent and Trademark Office

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel40 of 161

EXHIBIT G

. (T

United States Patent [
Yellin et al.

US006061520A
(11] Patent Number:

6,061,520

[45] Date of Patent: May 9, 2000

[54] METHOD AND SYSTEM FOR PERFORMING
STATIC INITIALIZATION

[75] Inventors: Frank Yellin, Redwood City; Richard
D. Tuck, San Francisco, both of Calif.

[73] Assignee: Sun Microsystems, Inc., Palo Alto,

Calif.

[21] Appl. No.: 09/055,947

[22] Filed: Apr. 7, 1998

[51] Int. CL7 oo GO6F 9/45; GOGF 3/00

[52] US.Cl .. 395/705; 395/704; 395/500.43;
709/100

[58] Field of Searchccccccoeecnenenncneee 395/705, 707,
395/709

[56] References Cited

U.S. PATENT DOCUMENTS
5,361,350 11/1994 Conner et al.ccceceevevuevenuencene 707/103

5,367,685 11/1994 Gosling
5,421,016 5/1995 Conner et al.

... 395/707
... 395/707
.. 707/103

5,437,025 7/1995 Bale et al.

5,615,400 3/1997 Cowsar et al. 709/305
5,668,999 9/1997 Gosling 395/704
5,812,828 9/1998 Kaufer et al. . 395/500.43
5,815,718 9/1998 Tock 395/705
5,903,899 5/1999 Steele, Ir. 707/206
5,966,702 10/1999 Fresko et al. 707/1
5,999,732 12/1999 Bak et al. 395/705

6,003,038 12/1999 Chenccoovvvvvvvivviiniicnnne 707/103
OTHER PUBLICATIONS

Tyma, P;, “Tuning Java Performance ”. Dr. Dobb’s Journal
[online], vol. 21, No. 4, pp. 52-58, Apr. 1996.

Cierniak et al., “Briki: an optimizing Java compiler”. IEEE/
IEEE Electronic Library, Proceedings, IEEE Compcon pp.
179-184, Feb. 1997.

Bell, D.; “Make Java fast: Optimize!”. Javaworld[online].
Cramer et al.; “Compiling Java just in time”. IEEE FElec-
tronic Library[online], vol. 17, Iss. 3, pp. 36-43, May 1997.
Lindholm, Tim et al., The Java Virtual Machine Specifica-
tion, 1997.

Comar et al.; “Targeting GNAT to the Java virtual machine”.
ACM Digital Library[online], Proceedings of the conference
on TRI-Ada '97, May 1997.

Hsieh et al.; “Compilers for improved Java Performance”.
IEEE Electronic Library[online]. Computer[online], vol. 30,
Iss. 6, pp. 67-75, Jun. 1997.

Armstrong, E.; “Hotspot: A new breed of virtual machine”.
Javaworld[online].

Gosling et al.; The Java Language Specification. Reading,
MA, Addison—-Wesley. Ch 12, pp. 215-236, Sep. 1996.

Primary Examiner—Tariq R. Hafiz

Assistant Examiner—XKelvin E. Booker

Attorney, Agent, or Firm—Finnegan, Henderson, Farabow,
Garrett & Dunner, L.L.P.

[57] ABSTRACT

The disclosed system represents an improvement over con-
ventional systems for initializing static arrays by reducing
the amount of code executed by the virtual machine to
statically initialize an array. To realize this reduction, when
consolidating class files, the preloader identifies all <clinit>
methods and play executes these methods to determine the
static initialization performed by them. The preloader then
creates an expression indicating the static initialization per-
formed by the <clinit> method and stores this expression in
the .mclass file, replacing the <clinit> method. As such, the
code of the <clinit> method, containing many instructions,
is replaced by a single expression instructing the virtual
machine to perform static initialization, thus saving a sig-
nificant amount of memory. The virtual machine is modified
to recognize this expression and perform the appropriate
static initialization of an array.

23 Claims, 3 Drawing Sheets

PRELOADER

READ CLASS FILETO | ~302
OBTAIN A CLINIT METHOD

ALLOCATE VARIABLES

PERFORM OPERATION
REFLECTED BY BYTE CODE

STORE DIRECTIVES IN
ITS CLASS FILE

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel42 of 161

U.S. Patent May 9, 2000 Sheet 1 of 3 6,061,520

o)

/102
COMPILE PROGRAM
104
CONSOLIDATE CLASS /
FILES
106
RUN mcLass L
FILE ON VM

o)

FIG. 1

(PRIOR ART)

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel43 of 161

6,061,520

Sheet 2 of 3

May 9, 2000

U.S. Patent

00¢

¢ ‘Olid

p0z
L1,/ 3OA3CLNGNI AVIdSIQ O3AIA R,
Ndo
o1z’ ¢l
WA w31sAs
m INILNNY YAYT
3114 \ozz Lz
STUISSVIO__ N o7y H3AVOTRId N 7z
AVHO0Nd N ,o0 MIUANOD N g7
30IA3A 39VHOLS
g0z”/| ~ AdvaNOD3S 00z AHOWIN
¥ILNJINOD
z0e

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel44 of 161

U.S. Patent May 9, 2000 Sheet 3 of 3

(?RELOADE@)

READ CLASS FILE TO
OBTAIN A CLINIT METHOD

302

ALLOCATE VARIABLES

304

A

READ ABYTE CODE

306

308

Y

PERFORM OPERATION
REFLECTED BY BYTE CODE

| _-310

314
MORE BYTE

Y

CODV

Y

STORE DIRECTIVES IN
ITS CLASS FILE

| _-318

o
FIG. 3

6,061,520

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel45 of 161

6,061,520

1

METHOD AND SYSTEM FOR PERFORMING
STATIC INITIALIZATION

FIELD OF THE INVENTION

The present invention relates generally to data processing
systems and, more particularly, to a method and system for
performing static initialization.

BACKGROUND OF THE INVENTION

Java™ describes both a programming language and a
programming environment for generating and running
platform-independent code. This platform-independent code
runs on a Java™ virtual machine, which is an abstract
computing machine that interprets the platform-independent
code. The Java™ virtual machine is described in greater
detail in Lindholm and Yellin, The Java Virtual Machine
Specification, Addison-Wesley (1997), which is hereby
incorporated by reference. The Java™ virtual machine does
not specifically recognize the Java™ programming language
or any other programming language; instead, the Java virtual
machine only recognizes a particular file format, the class
file format. A class file contains the Java virtual machine
instructions (or byte codes) that constitute the platform-
independent code.

As part of running a Java program, a developer performs
a number of steps, as shown in FIG. 1. First, a developer
compiles a computer program (step 102). Typically, the
developer has developed a computer program containing
source code in a high-level language, such as the Java
programming language, and invokes the Java™ compiler to
compile the code. The Java compiler is part of the Java™
software development kit available from Sun Microsystems
of Mountain View, Calif,. The Java compiler outputs one or
more class files containing byte codes suitable for execution
on the Java virtual machine. Each class file contains one type
of the Java programming language, either a class or an
interface. The class file format is described in greater detail
on pp. 83-137 of The Java Virtual Machine Specification.
Although the class file format is a robust file format, it is
unable to instruct the virtual machine to statically initialize
an array efficiently, thus posing a problem, discussed in
greater detail below.

After compiling the program, the developer consolidates
the class files output in step 102 into a single file, known as
a .mclass file, by using a preloader (step 104). The preloader
also available from Sun Microsystems, Inc., concatenates
the class files and performs preprocessing to facilitate the
execution of the class files. After consolidating the class
files, the developer loads the .mclass file into a wvirtual
machine (step 106). In this step, the Java virtual machine
stores the .mclass file in memory and interprets the byte
codes contained in the .mclass file by reading the byte codes
and then processing and executing them. Until interpretation
of the byte codes is completed, the .mclass file is stored in
memory. The byte codes recognized by the Java virtual
machine are more clearly described on pp. 151-338 of The
Java Virtual Machine Specification.

As stated above, the class file format cannot instruct the
virtual machine to statically initialize arrays. To compensate
for this problem, the Java™ compiler generates a special
method, <clinit>, to perform class initialization, including
initialization of static arrays. An example of the initialization
of a static array follows:

Code Table #1
static int setup[]={1, 2, 3, 4};

In this example, an array “setup” contains four integers
statically initialized to the following values: 1, 2, 3, and 4.

10

15

25

30

35

40

45

50

55

60

65

2

Given this static initialization, the Java™ compiler creates a
<clinit> method that performs the static initialization as
functionally described below in pseudo-code:

Code Table #2

temp=new int [4];

temp=[0]=1;

temp=[1]=2;

temp=[2]=3;

temp=[3]=4;

this.setup=temp;

As the above code table shows, merely describing the
<clinit> method functionally requires a number of state-
ments. More importantly, however, the actual processing of
the <clinit> method, performed by byte codes, requires
many more statements. These byte codes manipulate a stack
resulting in the requested static initialization. A stack is a
portion of memory used by the methods in the Java pro-
gramming environment. The steps performed by the <clinit>
method for the example static initialization described above
are expressed below in byte codes.

Code Table #3

Method void <clinit>()
0 iconst_4 //push an integer value of 4 on the stack

1 newarray int //create a new array of integers and put it
on the stack.

3 dup //duplicate top of stack

4 iconst_ 0 //push an integer value of O on the stack
5 iconst_1 //push an integer value of 1 on the stack
6 iastore //store a 1 at index O of array

7 dup //duplicate the top of the stack

8 iconst__1 //push an integer value of 1 on the stack
9 iconst_2 //push an integer value of 2 on the stack
10 iastore //store a 2 at index 1 of array

11 dup //duplicate top of stack

12 iconst_ 2 //push an integer value of 2 on the stack
13 iconst_ 3 //push an integer value of 3 on the stack
14 iastore //store a 3 at index 2 of array

15 dup //duplicate top of stack

16 iconst_3 //push an integer of value 3 on stack

17 iconst_4 //push an integer of value 4 on stack

18 iastore //store a 4 at index 3 of array

19 putstatic #3<Field foobar.setup [I> //modify set up
array according to new array on stack

22 return

Although using the <clinit> method provides the Java™
compiler with a way to instruct the virtual machine to
initialize a static array, the amount of code required to
initialize the array is many times the size of the array, thus
requiring a significant amount of memory. It is therefore
desirable to improve static initialization.

SUMMARY OF THE INVENTION

The disclosed system represents an improvement over
conventional systems for initializing static arrays by reduc-
ing the amount of code executed by the virtual machine to
statically initialize an array. To realize this reduction, when
consolidating class files, the preloader identifies all <clinit>
methods and simulates executing (“play executes”) these
methods to determine the static initialization performed by

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel46 of 161

6,061,520

3

them. The preloader then creates an expression indicating
the static initialization performed by the <clinit> method and
stores this expression in the .mclass file, replacing the
<clinit> method. As such, the code of the <clinit> method,
containing many instructions, is replaced by a single expres-
sion instructing the virtual machine to perform static
initialization, thus saving a significant amount of memory.
The virtual machine is modified to recognize this expression
and perform the appropriate static initialization of an array.

Methods consistent with the present invention receive
code to be run on a processing component to perform an
operation. The code is then play executed on the memory
without running the code on the processing component to
identify the operation if the code were run by the processing
component. Thereafter, a directive is created for the pro-
cessing component to perform the operation.

A data processing system consistent with the present
invention contains a secondary storage device, a memory,
and a processor. The secondary storage device contains a
program with source code that statically initializes the data
structure and class files, where one of the class files contains
a <clinit> method that statically initializes the data structure.
The memory contains a compiler for compiling the program
and for generating the class files and a preloader for con-
solidating the class files, for simulating execution of the
<clinit> method to determine the static initialization the
<clinit> method performs, and for creating an instruction to
perform the static initialization. The processor runs the
compiler and the preloader.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a flowchart of the steps performed when
developing a program in the Java™ programming environ-
ment.

FIG. 2 depicts a data processing system consistent with
the present invention.

FIG. 3 depicts a flowchart of the steps performed by the
preloader depicted in FIG. 2.

DETAILED DESCRIPTION OF THE
INVENTION

Systems and methods consistent with the present inven-
tion provide an improved system for initializing static arrays
in the Java™ programming environment by replacing the
<clinit> method with one or more directives which, when
read by the virtual machine, causes the virtual machine to
perform the same static initialization performed by the
<clinit> method, except using a significantly less amount of
memory and significantly less time. As a result, such sys-
tems and methods can significantly reduce memory utiliza-
tion when statically initializing an array.

Overview

Systems and methods consistent with the present inven-
tion eliminate the need for the <clinit> method by perform-
ing certain preprocessing in the preloader. Specifically, the
preloader receives class files for consolidation and scans
them looking for a <clinit> method. When the preloader
finds the <clinit method, it simulates execting (“play
executes”) the <clinit> method against memory to determine
the effects that the <clinit> method would have on the
memory if interpreted by the Java virtual machine. That is,
the preloader simulates execution of the <clinit> method to
identify the static initialization that would result had the
<clinit> method been executed by the Java™ virtual
machine. After identifying this static initialization, the pre-
loader generates one or more directives (or instructions) to

10

15

20

25

30

35

40

45

50

55

60

65

4

cause the same static initialization as the <clinit> method
and outputs these directives to the Java virtual machine, thus
replacing the <clinit> method. These directives are then read
at runtime by the Java virtual machine causing the Java
virtual machine to perform the same static initialization
performed by the <clinit> method. The directives require
significantly less memory space than the <clinit> method.
For example, the byte codes described above in code table
#3 could be reduced to the following directives contained
within the .mclass file indicating that an array of four
integers has the initial values 1, 2, 3, and 4:

CONSTANT_Array T_INT41234
The virtual machine of an exemplary embodiment recog-
nizes this expression and statically initializes the array to the
appropriate values. As a result, the exemplary embodiment
reduces memory consumption over conventional systems
when initializing a static array.

Implementation Details

FIG. 2 depicts a data processing system 200 consistent
with the present invention. The data processing system 200
comprises a computer system 202 connected to the Internet
204. Computer system 202 contains a memory 206, a
secondary storage device 208, a central processing unit
(CPU) 210, an input device 212, and a video display 214.
The memory 206 further includes the Java™ compiler 218,
the Java™ preloader 220, and the Java™ runtime system
221. The Java™ runtime system 221 includes the Java™
virtual machine 222. The secondary storage device 208
contains a program 224 with source code, various class files
226, and a .mclass file 228. The Java™ compiler 218
compiles the program 224 into one or more class files 226.
The preloader 220 then receives the class files 226 and
generates a .mclass file 228 representing the consolidation of
all of the class files. After consolidation, the .mclass file 228
can be run on the virtual machine 222.

Processing consistent with the present invention is per-
formed by the preloader 220 searching for a <clinit>
method, and when it is found, the preloader (1) simulates
execution of the <clinit> method to determine the effects it
would have on memory if it was interpreted by the virtual
machine 222, (2) creates static initialization directives to
replicate these effects, and (3) outputs these directives in the
.mclass file to replace the <clinit> method, thus saving
significant amounts of memory.

In addition, processing consistent with the present inven-
tion is performed by the virtual machine 222 because it is
modified to recognize the static initialization directives of
the preloader. Although an exemplary embodiment of the
present invention is described as being stored in memory
206, one skilled in the art will appreciate that it may also be
stored on other computer-readable media, such as secondary
storage devices like hard disks, floppy disks, or CD-Rom; a
carrier wave received from the Internet 204; or other forms
of RAM or ROM. Additionally, one skilled in the art will
appreciate that computer 202 may contain additional or
different components.

The Preloader

FIG. 3 depicts a flowchart of the steps performed by the
preloader 220 consistent with the present invention to per-
form initialization of a static array. The first step performed
by the preloader is to read a class file to obtain the <clinit>
method (step 302). After obtaining a <clinit> method, the
preloader allocates various variables for use during play
execution (step 304). When play executing, discussed below,
the preloader simulates execution of the byte codes con-
tained in the <clinit> method by the virtual machine. These
byte codes manipulate various data structures associated

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel47 of 161

6,061,520

5

with the <clinit> method, such as the constant pool, the
stack, or local variables (or registers).

The constant pool is a table of variable-length structures
representing various string constants, class names, field
names, and other constants referred to within the class file.
The stack is a portion of memory for use in storing operands
during the execution of the method. Thus, the size of the
stack is the largest amount of space occupied by the oper-
ands at any point during execution of this method. The local
variables are the variables that are used by this method.

When allocating variables, the preloader obtains a pointer
to the constant pool of the <clinit> method, allocates a stack
to the appropriate size, and allocates an array such that one
entry of the array corresponds to each of the local variables.
As described below, the play execution operates on these
variables.

After allocating the variables, the preloader reads a byte
code from the <clinit> method (step 306). Next, the pre-
loader determines if it recognizes this byte code (step 308).
In this step, the preloader recognizes a subset of all byte
codes where this subset contains only those byte codes that
are generally used to perform static initialization of an array.
Following is a list of the byte codes recognized by the
preloader of an exemplary embodiment:

Code Table #4

aconst__null iastore

iconst_ m1 lastore
iconst_0 fastore
iconst 1 dastore
iconst_ 2 aastore
iconst_ 3 bastore
iconst_4 lastore
iconst_5 sastore
Iconst_0 dup
lconst_1 newarray
feonst_0 anewarray
feonst__1 return
feconst_ 2 Ide
dconst_ 0 lde_w
deonst_1 lde2_w
bipush putstatic
sipush

Any byte codes other than those listed above are not
recognized. The appearance of other byte codes beyond
those described above indicates that the <clinit> method
performs functionality in addition to statically initializing an
array. In this case, the <clinit> method cannot be optimized.
If a byte code is not recognized, the preloader considers it
unsuitable for optimization (or play execution) and process-
ing continues to step 316.

If the preloader recognizes the byte code, however, the
preloader performs the operation reflected by the byte code
(step 310). In this step, the preloader play executes the byte
code on the variables allocated in step 304, and as a result,
a value may be popped from the stack, a local variable may
be updated, or a value from the constant pool may be
retrieved. Additionally, the preloader may encounter a “put
static” byte code indicating that a particular static variable
(e.g., array) is to be initialized in a particular manner. If the
preloader receives such a byte code, it stores an indication
of the requested initialization into a hash table for later use.
An example of such an entry in the hash table follows:

Setup:=Array (1,2,3,4)

After performing the operation reflected by the byte code,
the preloader determines if there are more byte codes in the

10

15

20

25

30

35

40

45

50

55

60

65

6

<clinit> method (step 314). If so, processing returns to step
306. However, if there are no more byte codes, the preloader
stores directions in the .mclass file to statically initialize the
arrays (step 318). In this step, the preloader stores constant
pool entries into the .mclass file like the following:

Tag Type Size Values

CONSTANT_Array T_INT 4 1234

This entry in the constant pool indicates that a particular
array has four integers that have the initial values of 1, 2, 3,
and 4. At run time, when the virtual machine initializes the
class .mclass file, it will encounter a reference to this
constant pool entry and create the appropriate array. As a
result, the many instructions contained in the <clinit>
method are reduced to this one expression, saving significant
amounts of memory and time.

Example Implementation of the Preloader

The following pseudo-code describes sample processing
of the preloader of an exemplary embodiment. The preloader
receives as a parameter a method information data structure
that defines the <clinit> method, described in the Java™
Virtual Machine Specification at pp. 104-106, and play
executes the byte codes of this <clinit> method. It should be
noted that the processing described is only exemplary; as
such, only a few byte codes are described as being processed
by the preloader. However, one skilled in the art will
appreciate that all of the byte codes in code table #4 may be
processed by the exemplary embodiment.

Code Table #5

void emulateByteCodes(Method__info mb)
int numberRegisters = mb.max_ locals();
int stackSize = mb.max_ stack(); //stack size
byte byteCode [] = mb.code(); //get the byte code
ConstantPool constantPool = mb.constantPool(); // get constant pool
Object stack]] = new Object[stackSize]; /fcreate stack for
play execution
/fcreate local
variables
for play
/fexecution

//mumber of local variables

Object registers[] = new Object| numberRegisters];

/* Start with an empty stack. */
int stackTop = -1;
/* Map of static objects */
Hashtable changes = new Hashtable();
try {
boolean success;
execution__loop:
for (int codeOffset = 0, nextCodeOffset;
;codeOffset = nextCodeOffset) {
int opcode = byteCode[codeOffset] & OxFF; //0..255
nextCodeOffset = codeOffset + 1; // the most usual value
switch(opcode) {
case opc_iconst_m1: // push -1 on the stack
stack[++stackTop] = new Integer(-1);
break;
case opc__bipush:
nextCodeOffset = codeOffset + 2;
stack|++stackTop] = new Integer(bytecode[codeOffset + 1]);
break;
case opc__1load__3: //load the contents of register 3
stack|++stackTop] = (Long)register [3];
stack[++stackTop] = null; //longs use two words on stack
break;
case opc__fsub: { // subtract top of stack from item below
float b = stack[stackTop—-].floatValue();
float a = stack[stackTop].floatValue();

//just below valid element

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel48 of 161

6,061,520
-continued -continued
Code Table #5 Code Table #6
stack[stackTop] = new Float(a - b); 5 ul type; /* see below */
break; u4 length; /* number of elements of the array */

case opc__ldc:
nextCodeOffset = codeOffset + 2;
stack] ++stackTop] =
constantPool.getltem(byteCode (codeOffset + 1));
break;
case sastore: {// store the contents into a “short” array
short value = (short) (stack[StackTop—-].int Value());
int index = stack[StackTop—-].intvalue();
short[] array = (short] J)stack[StackTop—-];
array[index] = value;
break;
¥
case opc__putstatic: {
nextCodeOffset = codeOffset + 3;
int index = ((byteCode[codeOffset + 1]) & OxFF) << 8) +
(byteCode[codeOffset + 2] & OxFF);
Field f = constantPool.getltem(byteCode[codeOffset + 1]);
if (f.getClass() ! = mb.getClass()) {
/I we can only modify static’s in our own class
throw new RuntimeException();

Type t = f.getType();
if (tisLong() || t.isDouble())
++stackTop;
Object value = stack]++stackTop]
changes.put(f, value); // put entry into hashtable
break;
case opc_return:
success = true;
break execution__loop;
default: // some byte code we do not understand
success = false;
break execution_ loop;

}

} catch (RuntimeException) {
// any runtime exception indicates failure.
success = false;

if (success) {
<modify .class file as indicated by “changes” hashtable>
<Remove this <clinit> method from the class>
}else {
<ran into something we cannot understand>
<do not replace this method>

The Virtual Machine of the Exemplary Embodiment

As stated above, the Java virtual machine 222 is an
otherwise standard Java virtual machine as defined in the
Java Virtual Machine Specification, except that it is modi-
fied as will be described below. Conventional virtual
machines recognize various constant pool entries, such as
CONSTANT__Integer, CONSTANT_ String, and
CONSTANT_Long. Constant pool entries of these types
store various variable information, including the initial
value. The virtual machine of an exemplary embodiment,
however, additionally recognizes the CONSTANT__Array
entry in the constant pool.

The format of the CONSTANT__Array constant pool
entry in the class file format follows:

Code Table #6

CONSTANT__Array__info {
ul tag; /* The literal value CONSTANT__Array */

ux objects[length, /* Actual values */
/* The following field is included only if type ==
T_CLASS */
u2 type2; /* index of CONSTANT__Class in constant pool */
10 }

The ul type field is one of the values listed in the following
15 table:

Array Type Value

20 T_CLASS

T_BOOLEAN

T_DOUBLE
T_BYTE
T_SHORT
T_INT
T_LONG

25

= O Woo - b

e

The field ux objects[length] is an array of values, provid-
ing the elements of the array. The number of elements in the
array is given by the length field of the constant pool entry.
The actual size of each of these values is shown below:

35
Type ux Meaning
T_BOOLEAN, T_BYTE ul 1 byte
T_CHAR, T_SHORT, T_CLASS u2 2 bytes

40 T_INT, T_FLOAT ud 4 bytes
T_LONG, T_DOUBLE us 8 bytes

45 Forall of the above types except for T__ CLASS, the bytes

shown are the actual value that are stored in that element of
the array. For T__CLASS, however, each u2 is itself an index
to an entry into the constant pool. The constant pool entry
referred to must itself be either a CONSTANT Array,
CONSTANT __Object, or the special constant pool entry 0,
indicating a NULL value.

50

For example, to indicate the following array:

55
inf]]={10, 20, 30, 40 };

6 the constant pool entry would be as follows:

Tag Type Size Initial Values

CONSTANT_Array T_INT 4 10 20 30 40

65

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel49 of 161

6,061,520

9

As another example, to indicate the following array:
new Foo[3 J/* all initialized to NULL */

the constant pool entry would be as follows:

Tag Type Size Initial Values Class

CONSTANT_Array T_CLASS 3 000 XX

where “xx” is an index into the constant pool indicating the
class Foo in the constant pool.
Two-dimensional arrays like the following:

new byte[T 1={{1,2,3,4 }, {5.6,7.8 }};

are encoded by having two constant pool entries encode the
sub-arrays and by having two additional entries indicate the
association between the subarrays. This encoding corre-
sponds to the Java™ notion of an array as a type of object
and a multi-dimensional array as an array of arrays. The
constant pool entries of the above two-dimensional array
follows:

Entryl: CONSTANT_Array T_BYTE 4123 4
Entry2: CONSTANT_Array T_BYTE 45678

Entry3: CONSTANT__Class with name “[[B”

and then
Tag Type Size Initial Values Class
Entry4: CONSTANT__Array T_Class 2 Entryl Entry2 Entry3

where each of Entryl, Entry2, and Entry3 are the two-byte
encodings of the index of the corresponding constant-pool
entry.

While the systems and methods of the present invention
have been described with reference to a preferred
embodiment, those skilled in the art will know of various
changes in form and detail which may be made without
departing from the spirit and scope of the present invention
as defined in the appended claims.

What is claimed is:

1. A method in a data processing system for statically
initializing an array, comprising the steps of:

compiling source code containing the array with static

values to generate a class file with a clinit method
containing byte codes to statically initialize the array to
the static values;

receiving the class file into a preloader;

simulating execution of the byte codes of the clinit
method against a memory without executing the byte
codes to identify the static initialization of the array by
the preloader;
storing into an output file an instruction requesting the
static initialization of the array; and
interpreting the instruction by a virtual machine to per-
form the static initialization of the array.
2. The method of claim 1 wherein the storing step includes
step of:
storing a constant pool entry into the constant pool.
3. The method of claim 1 wherein the play executing step
includes the steps of:

35

40

45

50

55

60

65

10

allocating a stack;

reading a byte code from the clinit method that manipu-
lates the stack; and

performing the stack manipulation on the allocated stack.
4. The method of claim 1 wherein the play executing step
includes the steps of:

allocating variables;

reading a byte code from the clinit method that manipu-
lates local variables of the clinit method; and

performing the manipulation of the local variables on the
allocated variables.

5. The method of claim 1 wherein the play executing step
includes the steps of:

obtaining a reference to a constant pool of the clinit

method;

reading a byte code from the clinit method that manipu-

lates the constant pool; and

performing the constant pool manipulation.

6. A method in a data processing system, comprising the
steps of:

receiving code to be run on a processing component to

perform an operation;
play executing the code without running the code on the
processing component to identify the operation if the
code were run by the processing component; and

creating an instruction for the processing component to
perform the operation.

7. The method of claim 6 wherein the operation initializes
a data structure, and wherein the play executing step
includes the step of:

play executing the code to identify the initialization of the

data structure.

8. The method of claim 6 wherein the operation statically
initializes an array and wherein the play executing step
includes the step of:

play executing the code to identify the static initialization

of the array.

9. The method of claim 6 further including the step of:

running the created instruction on the processing compo-

nent to perform the operation.

10. The method of claim 6 further including the step of:

interpreting the created instruction by a virtual machine to

perform the operation.

11. The method of claim 6 wherein the operation has an
effect on memory, and wherein the play executing step
includes the step of:

play executing the code to identify the effect on the

memory.

12. A data processing system comprising:

a storage device containing:

a program with source code that statically initializes a
data structure; and

class files, wherein one of the class files contains a
clinit method that statically initializes the data struc-
ture;

a memory containing:

a compiler for compiling the program and generating
the class files; and

a preloader for consolidating the class files, for play
executing the clinit method to determine the static
initialization the clinit method performs, and for
creating an instruction to perform the static initial-
ization; and

a processor for running the compiler and the preloader.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel50 of 161

6,061,520

11

13. The data processing system of claim 12 wherein the
preloader includes a mechanism for generating an output file
containing the created instruction.

14. The data processing system of claim 13 wherein the
memory further includes a virtual machine that interprets the
created instruction to perform the static initialization.

15. The data processing system of claim 12, wherein the
data structure is an array.

16. The data processing system of claim 12 wherein the
clinit method has byte codes that statically initialize the data
structure.

17. The data processing system of claim 12 wherein the
created instruction includes an entry into a constant pool.

18. A computer-readable medium containing instructions
for controlling a data processing system to perform a
method, comprising the steps of:

receiving code to be run on a processing component to

perform an operation;
simulating execution of the code without running the code
on the processing component to identify the operation
if the code were run by the processing component; and

creating an instruction for the processing component to
perform the operation.

19. The computer-readable medium of claim 18 wherein
the operation initializes a data structure, and wherein the
simulating step includes the step of:

10

15

20

25

12

simulating execution of the code to identify the initial-
ization of the data structure.
20. The computer-readable medium of claim 18 wherein
the operation statically initializes an array and wherein the
simulating step includes the step of:

simulating execution of the code to identify the static
initialization of the array.
21. The computer-readable medium of claim 18 further
including the step of:
running the created instruction on the processing compo-
nent to perform the operation.
22. The computer-readable medium of claim 18 further
including the step of:
interpreting the created instruction by a virtual machine to
perform the operation.
23. The computer-readable medium of claim 18 wherein
the operation has an effect on memory, and wherein the
simulating step includes the step of:

simulating execution of the code to identify the effect on
the memory.

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel51 of 161

EXHIBIT H

orm

Certificate of RegistFatiohe1 18 pocumentl Fi|ed08/12/1bpa e152 of 161

This Certificate issued under the seal of the Copyright STATES COPYRIGHT OFFICE

Office in accordance with title 17, United States Code, —

attests that registration has been made for the work ™ 6-— 196514

identified below. The information on this certificate has

been made a part of the Copyright Office records. 'I
ATIN0619651 4

EFFECTIVEBATE OF REGISTRATION
6;} o Wy
. Yoge

WV IR WG ADVYE 11RO LAVE B TUU IGEU WIS Or mut, e A ouraRATE CONTINUATION SHEET

Register 6f Copyrights, United States of America

1 TITLE OF THIS WORK V

Java 2 Standard Edition 1.4

PREVIOUS OR ALTERNATIVE TITLES ¥
J2SE 1.4, Java 2 Platform, Standard Edition, v 1.4, Java 2 Standard Edition Software Development Kit 1.4, SDK 1.4

PUBLICATION AS A CONTRIBUTION If this work wae published ss a contribution % a periodical, secial, or collaction, give infoemation sbout the
collective work in which the contribution appeared Title of Collective Work ¥

If published in a periodical or serial give Volume ¥ Number ¥ Issue Date ¥ On Pages V

NAME OF AUTHOR V DATES OF BIRTH AND ETH
YearBorn' V¥ Year Died ¥V

d Sun Microsystems, Inc

Was this contribution to the work a W’S NATIONALITY OR DOMICILE WAB AUTHOR’S CONTRIBUTION TO

“work made for hure? Country dmmbdr
Yer on{c;mab TS Ana!ymau.? OYes ®No e
O No Doguciled inle tates Pasudonymous? [TYes JWNo instrucsors.

NATURE OF AUTHORSHIP Beiefly describe nature of mierial crested by this suthor in which copyright is daimed ¥

NOTE New and revised computer code and accompanying documontation and manuals
DATES OF BIRTH AND TH

Undei the law _ NAME OF AUTHOR ¥)
Year Born Y, v

o rork hade b (SEE FORM TX/CON FOR ADDITIONAL AUTHORS) “ o

Sepioyer mot Waa this contribution to the worka AUTHOR'S NATIONALITY OR DOMICILE WAS THIS AUTHOR'S CONTRIBUTION TO

::.mu “work made for hure"? Name of Country THE WORK :ﬁ'::-—-a:

o Dosniciled inle__ Pesudonymons? (1 Yes [] No wiulions.
e ter e NATURE OF AUTHORSHIP Briafly describe natire of materual creted by s mathor bn sehich cooyright is datzmed W
xok'Yu n :
spaoce
prodded ove NAME OF AUTHOR ¥ ?Mmrmmm m
smploy v

(or ether C ear

person lor

vy Wasthis contribution to the work a AUTHOR'S NATIONALITY OR DOMICILE WAS THIS AUTHOX'S CONTRIBUTION TO

as Author of “wock made for hure™? Neme of Courtry THE WORK 1 the anmwer 19 elher

m::::.md 0 Yes on{cu.wmol’ Anonymous? OYes [J No yy:..-,:mmh

space for dates [No Domiciled infe . Preudocymous?) Yes [J No Instructions.

ooty NATURE OF AUTHORSHIP Boefly describe nature of material created by this author in which copynght 18 daimed ¥

YRARINWHIGlCRBAﬂONOI'THIS DATE AND NATIO 5 mmNOI'MGS
awoxxwuoomm b °"'ﬂ""""""‘""‘ m Yourp 0

*-2004-2002 AYow h.uul. { Mation

COPYRIGHT CLAIMANTY(S) Name and sddress must be given even f the claimant is the same as Aw e

the suthor given in space2 ¥
Sun Microsystems, Inc ‘> ONE DEPOSIT RECEIVED

so o 4150 Network Circle E; M

mmuu Santa Clara, CA 95054

muhddmdl)mmluem:p.alh(m)dwhmhm&ummdm Eg
space 2, give & brief statecwent of how the daimant(s) obta the copyright. ¥ FUNDS RECEIVED
By written agreement R

MORE ON BACK p Commwwwhm(mmuu)onm.mmmmm
Sion the form at ine 8 ~

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel53 of 161

_—
*Amended by C O Authority of Susanne Morales EXAMINED BY J)(_. FORM'™X
from phone call on 07/ 26/2005 CHECKED BY \/
| CORRESPONDENCE COMYSHT
Yes OFFICE
USE
ONLY

DO NOT WRITE ABOVE THIS LINE IF YOU NEED MORE SPACE, USE A SEPARATE CONTINUATION SHEET

PREVIOUS REGISTRATION Has regustration for this work, or for an earher version of this work, already been made in the Copyright Office?
#'Yes [INo Ifyouransweris Yes why is another registration being sought? (Check approprate box) ¥

a O Thus 18 the first published edition of a work previously registered in unpublished form

b [Thus 15 the first application subnutted by this author as copynght caimant (See Form TX/CON for

¢ I This 1n & changsd versior: of the work, s shown hy space § on iz epplication. Previous Registrations)
If your answer 18 “Yes ~ give Previous Registration Number p- Year of Registration p
DERIVATIVE WORK OR COMPILATION
Preexisting Material Identify any preexasting wark or works that this work 18 based on or incorporates ¥ a 6
Prior works by claimant and hcensed-in components
See nstructions
Material Added to This Work Give a brief, general statement of the material that has been added to this work and 1n which copyright 1 claumed ¥ b‘”‘w

New and revised computer code and accompanying documentation and manuals

DEPOSIT ACCOUNT If the registration fee s to be charged to a Deposit Account established in the Copynight Office give name and number of Account
Name ¥V Account Number ¥ a 7

CORRESPONDENCE Give name and address to whch correspondance about this application should be sent. Name/Address/Apt/City /State/ZIP ¥ b
Ines Gonzalez, Esq

Fenwick & West LLP

801 California Street

Mountain View CA 94041

Area code arxd deytime Wiephone number p (650) 335 7182 Fax number p- (650) 938. 5200
» . , A
1gonzalez@fenwick com

CERTIFICATION® 1, the undersigned, hereby certify that] am the suthor
[other copyright clatmant

Check only one p
O owner of exclusive nght(s)
of the work identified mn thus application and that the statements made authonzed agent of _oUN Microsystems Inc
by me in this application are correct to the best of my knowledge Name of or ol o o k) A

Typed ot printed name snd date ¥ If thus apphication grves a date of publication in space 3 do not sign and submut 1t before that date
Manilyn E_ Glaubensklee, Assistant General Counsel S /v

Handwritten signatare (X) ¥

X — Lty gzM ________________

Cortificate | NemeV

::III: i Susanne S Morales Paralegal / Fenwick & West LLP

window NumberSrest/Apt ¥

money Posw wro auljoni s
::thl 'll.“' 801 California Street o
address Cly/Sia/ZIP ¥

Mountain View, CA 94041

wih the be fned not more than $2 500

17 U8 C. §508(s) Any person who knowingly makes & fales representation ol s materal fact in the
applicsiion shal

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel54 of 161

CONTINUATION SHEET Form I%_/coN
FOR APPLICATION FORMS -

oL]
This Continuation Sheet is used in conjunction with Forms CA, PA, SE SR TX and VA only l

indicate which basic form you are continuing in the space in the upper right-hand comer Risanteie]
® [f at alt possible try o @t the information called for into the spaces provided on the basic form PA Pwseseelseulsa)sn ™ IVA VAU
@ |f you do not have enough space for alf the information you need fo give on the basic forn use :

this Continuation Sheet and submit tt with the basic form EFFECTIVE DATE OF REQISTRATION
® |If you submit this Continuation Sheet clip (do not tape or staple) K fo the basic form and fold the

two fogether belore submitling them 6"‘\ ZD lb‘s/
® Space A of this sheet is intended 0 identify the basic sppiication

Spece B is a continuation of Space 2 on the basic appiication (Month) (Day) (Your)

Spece B Is not appiicabls 10 Short Forms -
Space C (on the reverse skde of this sheet) is for the continustion of Spaces 1 4, or 8 w RECEIVED

on the basic appflication or for the continuation of Space 1 on any of the three

8hort Forms PA, TX, or VA.
Page (‘é of ‘? pages

DO NOT WRITE ABOVE THIS LINE FOR COPYRIGHT OFFICE UBE ONLY

IDENTIFICATION OF CONTINUATION SHEET This sheet 13 a continuation of the application for copyright registration

on the basic form submmutted for the following work.
¢ TITLE (Give the title as given under the heading "Title of thts Work 1 Space 1 of the basic form)

Java 2 Standard Edition 1.4

A o NAME(S) AND ADDRESS(ES) OF COPYRIGHT CLAIMANT(S) (Give the name and address of at least one copyright clammant
identification 8 given in Space 4 of the basic form or Space 2 of any of the Short Forms PA, TX, or VA)
Application

Sun Microsystems, Inc , 4150 Network Circle, Santa Clara, CA 95054

NAME OF AUTHOR V DATES OF BIRTH AND DEATH
Year BornV Year DiedV

d = SPACE C)

‘ Was this contribution to the AUTHOR S NATIONALITY OR DOMICILE WAS THIS AUTHOR 8 CONTRIBUTION
work a “work made for hure™? Neme of Country TO THE WORK
Q Yes |szenofP Anonymous? [Yes U No 1 the snewer o el
OR: ' of 1hess questions b
Continustion () No n» Preudonymous? U Yes LI No ~Yes, 500 dotited
of Space 2 insiruoions.
NATURE OF AUTHORSHIP Brefly describe nature of the material created by the author in which copyright 1s clamed ¥
NAME OF AUTHOR ¥ DATES OF BIRTH AND DEATH
Year BomV Year DiedV
Was this contribution to the AUTHOR S NATIONALITY OR DOMICILE WAS THIS AUTHOR 8 CONTRIBUTION
work a “work made for hare™? Name of Country TO THE WORK
Khe % elther
Q Yes OR‘Ciﬂunof 4 Anonymous? (3 Yes (J No iyl
Q No inb Pseudonymous? U Yes L No “Yes, soe detelied

NATURE OF AUTHORSHIP Briefly describe nature of the material created by the author m which copynight 1s daimed ¥

DATES OF BIRTH AND DEATH

NAME OF AUTHOR ¥V
Year BornV Year DiedV

Was this contribution to the AUTHOR 8 NATIONALITY ORDOMICILE WAS THIS AUTHOR 8 CONTRIBUTION

work a “work made for hure”? Name of Counwy TO THE WORK
Q Yes OR‘szenofP Anonymous? () Yes U No :I':Mhd:r
Q No m P Pseudonymous? (1 Yes L No “Yes see detaied

NATURE OF AUTHORSHIP Briefly describe nature of the matenial created by the author m which copynght is deimed. ¥

Use the reverse sude of thus sheet if you need more space for contimuation of Spaces 1 4 or 6 of the basc form or for the

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel55 of 161

CONTINUATION OF (Checkwhich) (1 Spacel O Spaced £ Space Space 2b :
Name of Work for Donucile Anonymous Pseudo- Nature of Contribution
Author Hire nymous Continuation
of other
CNS Publishing Inc Yes United States Yes No Text of Documentation Spaces
Illustrations
Mary Dageforde dba Yes United States Yes No Text of Documentation
Dageforde Consultng
Chet Haase No Unted States Yes No Computer code
PrO Unhmuted, Inc Yes United States Yes No Computer code Text of
: Documentation
Select Appontments Yes Unuted States Yes No Computer code

(Holdings) PLC dba
New Boston Systems
Accountants Inc

AccountPros
Warewolf Technologies Inc ~ Yes United States Yes No Computer code
ZAO Elbrus MCST Yes Russia Yes No Computer code
[/] Space 5

Previous Year of

Registration No Registration

TX 5 271 787 2000
TX 5 316 757 2000
TX 5 316-758 2000
TX 5-359 984 2001
TX 5 359 985 2001
TX535998 2001
TX 5 359 987 2001
TX 5 392 885 2001

Name ¥V .

Susanne S Morales, Paralegal / Fenwick & West LLP
NumberSvest/Apt ¥

801 Cahiformia Street
Chy/State/ZIP ¥

Mountain View, CA 94041

Certificate
will be
malled in
window
to this
address

orm

For a Nondramatic Literary Work
UNITED STATES COPYRIGHT OFFICE

Certificate of Reedstdatio3p61-LB Documentl Filed08/12/10é gel50 qig6t

This Certificate issued under the seal of the Copyright -
Office in accordance with title 17, United States Code, RE X 6-065-—

attests that registration has been made for the work

identified below. The information on this certificate has M""“'””ﬂ”lﬂ
been made a part of the Copyright Office records.

[

EFFECTIVE DATE OF REGISTRATION

beth Gt 2 90

Year

Register 6f Copyrights, United States of America

DU NUI WHITE ABUVE THD LINE IF TUU NEEU MUHNE DPALE, USE A StEFARATE CONTINUATION SHEET

TITLE OF THIS WORK ¥

Java 2 Standard Edition, Version 5.0

PREVIOUS OR ALTERNATIVE TITLES ¥
J2SE 5 0, Java 2 Platform, Standard Edition, Version 5.0

PUBLICATION AS A CONTRIBUTION If this work was published as a contribution to a periodical senal or collection give information about the
oollective work in which the contnbution appeared Title of Collecsve Work ¥

I published in a penodical or senial give Volume ¥ Number ¥ Issuc Date ¥ On Pages ¥
NAME OF AUTHOR ¥ DATES OF BIRTH AND DEATH
Year Born ¥ Year Died ¥
d Sun Microsystems, Inc S
Was this contribution to the work 1 AUTHOR’'S NATIONALITY OR DOMICILE WAS THIS AUTHOR'S CONTRIBUTION TO
work mde for hare ? Name of Counry THE WORK wf to eithar
¥ Yes OR { Citizen of P Omted § Anonymous? OYes BNo yg ml doWIod‘
ONo Dormuciled nk__ 2 NITEC States Pseudonymous? [IYcs [@No "stctons
NOTE NATURE OF AUTHORSHIP Brefly describe nature of matenial created by thus author n which copynight i1s clamed 'V
New and revised computer code and accompanying documentation and manuals
Under the law N AME OF AUTHOR ¥ DATES OF BIRTH AND DEATH
"h'w:::‘":,?:d: ! Year Bom ¥ YearDied ¥
8 work m (SEE FORM TX/CON FOR ADDITIONAL AUTHORS)
fy th
Setowey et Was this contribution to theworka AUTHOR’S NATIONALITY OR DOMICILE WAS THIS AUTHOK'S CONTRIBUTION TO
the employese work made for hure ? Nama of Country THE WORK “ P lnswwlo M’:(
(see)m;lm oy 0 Yes oRJ Ciizen of P Anonymous? OYes O No Va 200 detaded
pait °'h"“’ CJNo Domuciled il Preudonymous? [Yes [] No _‘stuctions
w':::(’: ':,l,':‘:v.. NATURE OF AUTHORSHIP Briefly describe niture of materal created by thus author in which copynight 15 claimed v
chezk Yes in
the space
provided give NAME OF AUTHOR ¥ DATES OF BIRTH AND DEATH
the employer Ycar Born V¥ Year Died ¥
(or other
person for
o ey Was this contribution to theworka ~ AUTHOR'S NATIONALITY OR DOMICILE WAS THIS AUTHOR’S CONTRIBUTION TO
as Author of work made for hire ? Name of Country THE WORK if the answar 1o either
that part and O Yos OR{ Citizen of - Anonymous? O¥e O No ©hesequestons o
leave the
space for dates O No Domuciled ink Pseudonymous? [] Yes [J No iuctons
:'9:’:: ';l'.:: NATURE OF AUTHOﬁHIP Briefly describe nature of matenal created by this author in which copyright s daimed 'V

DATE AND NATION OF FIRST PUBLICATION OF THIS PARTICULAR WORK

YEAR IN WHICH CREATION OF THIS

WORK WAS COMPLETED Ts mformstion Compiate this information Month September Day) 30 Yoarp
a must be given ONLY d this work
Ayaxr i oll cases has been published _United States « Nation

COPYRIGHT CLAIMANT(S) Name and address must be given even if the daimant 1s the same 18 AP PUCAT'I_ON RECE[VEG
the author given in space 2 ¥ n[{\?[] 20 l*
w
Sun Microsystems, Inc] ONE DEPOSIT F‘EC%"E‘)
o 4150 Network Circle x5 _DEC70 20
betors complebng Santa Clara, CA 95054 g2 TWO DEPOSITS RECEIVED
space
TRANSFER If the clumant(s) named here in space 4 1s (are) different from the author(s) named in S“U‘
sp0e 2 give a brief statement of how the claimant(s) obtuned ownership of the copynight ¥ §<Ej FUNDS RECEIVED

By written agreement

0000 SRS
MORE ON BACK) Complete slf applicable sp (numbars § §) on the roverse side of this page DO NOT WRITE HERE
Sea detaded instructions Sign the form at kne 8 Oonn 4 ~F U

FORM TX

Case4:10-cv-03561-LB Documentl ﬁﬁ%d%@/iﬁ/l@ Yeye157 of 161
CHECKED BY
FOR
CORRESPONDENCE COPYRIGHT
Yas OFFICE
USE
ONLY
DO NOT WRITE ABOVE THIS LINE (F YOU NEED MORE SPACE, USE A SEPARATE CONTINUATION SHEET
PREVIOUS REGISTRATION Has registration for this work or for an carlier version of this work already been made i the Copyrnight Office?
¥ Yes [No Ifyouransweris Yes why is another registration being sought? (Check appropriate box) ¥
a [This 1s the first published edition of 2 work previously regstered in unpublished form (SEE FORM TX/CON FOR
b [This 1s the first apphcation submutted by this author as copynight claimant PREVIOUS REGISTRATIONS)
¢ ¥ This 1s 1 changed verston of the work as shown by space 6 on this application
Ifyour answeris Yes give Previous Registration Number p Year of Registration p
DERIVATIVE WORK OR COMPILATION '
Preexisting Material Identify any preexisting work or works that thus work 1s based on or incorporates ¥ ‘ a 6
Prior works by claimant and licensed-1n components
See mstructons
betore completing

Matenal Added to This Work Give a bnief general statement of the material that has been added to this work and in which copynight 1s daimed ¥ b""a space

New and revised computer code and accompanying documentation and manuals

DEPOSIT ACCOUNT If the regsstration fee 13 to be charged to a Duposit Account established in the Copynight Office give name and number of Account
Name ¥ Account Number ¥ a

CORRESPONDENCE Give name and address to whuch correspondence about this application should be sent Name/Address/ Apt/City /State/ ZIP ¥ b
Ines Gonzalez, Esq

Fenwick & West LLP

801 Califorma Street

Mountain View, CA 94041

Area code and daytxe telephone number b (650) 335-7182 Faxnumber b (650) 938-5200
4
1gonzalez@fenwick com
CERTIFICATION® I the undersigned hereby certify that] am the author
Chack only ons B O other copyright clajmant
[Jowner of exclustve nght(s)
of the work identified in this application and that the statements made authorized agent of Sun Microsystems, Inc
by me tn this application arc correct to the best of my know ledge o or other ol o of Bxch nghi(s) A

Typed or printed name and date ¥ If thus application gives a date of publication in space 3 do not sign and submut it before that date

Manlyn E Glaubensklee, Assistant General Counsel Dilep /J/ / 7[” 7—

Handwnitten signature (X) ¥
X __M g/ éZZO%G""‘Az

—— ——— — T — — — — — — . s it ot s ot e St i, S S ——

YOU MUST:
Certificate | Name ¥ Complyz :gm spaces
will be Susanne S Morales, Paralegal / Fenwick & West LLP SEND ALL 3 ELEMENTS
mailed in IN THE SAME PACKAGE:
1 Application fo
anvelope | noear 2 Nty oon o money zron
order payable 10 Regrster
to this 801 Califorma Street . graar payable Jo 1 fom chuck Bu
address City/State/ZIP ¥ e oo por
wrts the Copprigit
Mountain View, CA 94041 o waal
Washington D C 20559 8222

17U S C §508(e) Any person who knowingly makes a (atse rapresentaton of a matenal lact in the apphcation for copynght regustration providad for by saction 409 or m arty witten statement filed in connection
with the appkcation shall be fined not more than $2 500

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel58 of 161

CONTINUATION SHEET Form 1X_/CON

FOR APPLICATION FORMS 5 5_ss-ss

i)
I
L

NTXSIRE6E33I8a

SE|SEG|SEU|SR|SA TX”XU VA VAU

This Continuation Sheet is used in conjunction with Forms CA PA SE SR TX and VA only
Indicate which basic form you are continuing n the space in the upper nght hand corner

It at all possible try to fit the information called for into the spaces provided on the basic form [PTAIPAU
If you do not have enough space for all the information you need to give on the basic form use L.l

this Continuation Sheet and submit it with the basic form EFFECTIVE DATE OF REGISTRATION
If you submut this Continuation Sheet clip (do not tape or staple) 1t to the basic form and fold the

two together before submitting them l & CDO o) OZZ’/

Space A of this sheet is intended to identify the basic application

Space B is a continuation of Space 2 on the basic application {Month)
Space B is not applicable to Short Forms
Space C (on the reverse side of this sheet) s for the continuation of Spaces 1,4, 0r 6 CONTINUATION SHEET REC LVtB
on the basic application or for the continuation of Space 1 on any of the three E" 0 2 0 H 4
Short Forms PA, TX, or VA
Page \3 of L/{ pages

DO NOT WRITE ABOVE THIS LINE FOR COPYRIGHT OFFICE USE ONLY

Identification

[DENTIFICATION OF CONTINUATION SHEET Thus sheet 1s a continuation of the application for copynght registration
on the basic form submutted for the following work
® TITLE (Give the title as given under the heading Title of this Work 1 Space 1 of the basic form)

A Java 2 Standard Edition, Version 50

o NAME(S) AND ADDRESS(ES) OF COPYRIGHT CLAIMANT(S) (Give the name and address of at least one oopynght claimant
as given in Space 4 of the basic form or Space 2 of any of the Short Forms PA TX or VA)

of

Application Sun Microsystems, Inc , 4150 Network Circle, Santa Clara, CA 95054

NAME OF AUTHOR ¥ DATES OF BIRTH AND DEATH
Year BornV Year DiedV

d (SEE SPACEC)

Was this contribution to the AUTHOR S NATIONALITY OR DOMICILE WAS THIS AUTHOR S CONTRIBUTION
worka work made forhire 7 Name of Country TO THE WORK
O Yes Citizen of P Anonymous? O Yes O No “‘“““"‘ Lo erther
Continuation [No Domuciled n P Pseudonymous? [Yes 0 No Veu vot Gotaiod
instructions

of Space 2

NATURE OF AUTHORSHIP Brefly describe nature of the matenal created by the author in whuch copyright 1s clumed ¥

NAME OF AUTHOR ¥ DATES OF BIRTH AND DEATH
Year BornV Year DiedV¥

Was this contnbuhbon to the AUTHOR’S NATIONALITY OR DOMICILE WAS THIS AUTHOR S CONTRIBUTION

work a work made forhirc 7 Name of Country TO THE WORK
? If the answer to either
O Yes Citizen of P Anonymous O Yes O No v
a No Domualed m » Pseudonymous? OYes ONo Yu s0a detailed
nstruchons

NATURE OF AUTHORSHIP Brefly describe nature of the material created by the author i which copynight 1s claimed V¥

NAME OF AUTHOR ¥ DATES OF BIRTH AND DEATH
. . Year Born'V Year DiedV

Whs this contnbution to the AUTHOR'’S NATIONALITY OR DOMICILE ~ WAS THIS AUTHOR S CONTRIBUTION

work a work made for hire ? Name of Country TO THE WORK
i the to elth
O Yes Citizen of ¥ Anonymous? 1 Yes O No flo arswwar o e ot
Q No Domuciled in P Pseudonymous? [J Yes L No Yes soe detaied
nstructions

NATURE OF AUTHORSHIP Brefly describe nature of the material created by the author in which copynght is claimed ¥

Use the reverse side of this sheet if you necd more space for conhinuation of Spaces 1 4 or 6 of the basic form or for the

Case4:10-cv-03561-LB Documentl Filed08/12/10 Pagel59 of 161

CONTINUATION OF (Check which)

Name of
Author

Comsys

PrOUnlimited, Inc

TelTech International Corp

The Carl Group

ZAO Elbrus MCST

Space 5

Previous

Registration No

TX 5-271-787
TX 5-316-757
TX 5-316-758
TX 5-359-984
TX 5-359-985
TX 5-359-986
TX 5-359-987
TX 5-392-885

Work for
Hire
Yes
Yes
Yes
Yes
Yes

Year of

Registration

2000

2000

2000

2001

2001

2001

2001

2000

0 Space1

Domicile

United States

United States
United States
United States
United States

0 Spacet

O Space s Space 2b

Anonymous Pseudo

Yes

Yes
Yes
Yes
Yes

nymous

Yes

Yes
Yes
Yes
Yes

C

Continuation
of other
Spaces

Nature of Contribution

Computer code and
Text of documentation
Text of documentation
Computer code

Text of documentation
Computer code and
Text of documentation

Centificate | name v Complets all necessary spaces

will be Sign your appication

matedin | Susanne S Morales, Paralegal / Fenwick & West LLP

window NemboTSvesAT Y IN THE SAME PACKAGE:

envelope ; mmmmee 1n check of oo n::-w

to this 801 California Street g;(gggy %rd:& payable to Register Fur maee

address Cay/Stata/ZIP ¥ 3 Deposit Matanal ey

MAIL TO: ;‘:m’:

Mountain View, CA 94041 Library of Congress Copyngh Offce 0 wast

Washington D C 20558 6000

Certiﬁcate Of(ﬂf@iﬂ]ﬂ‘at{imGLLB Documentl Flled08/12/10 @g&%ﬁi&g&cgislmﬁon

UNITED STATES COPYRIGHT OFFICK

This Certificate issued under the seal of the Copyright REGremn s s
Office in accordance with title 17, United States Code, ' TX 6—143-306

attests that registration has been made for the work ‘ mmlmmuwm”"”ﬂu"mmmmm‘“ml"”m

identified below. The information on this certificate has
T XOUB6 14,3306

been made a part of the Copyright Office records. P
@ 7x | u [PA [PAU [VA [vau [SR [SRU [RE |

Ad% 63! m (BREEETIVE DATE OF SUPPLEMENTARY REG@ RATION
FEL 2 2005

Day Year

Registerof Copyrights, United States of America Month
DO NOT WRITE ABOVE THIS LINE. IF YOU NEED MORE SPACE, USE A SEPARATE CONTINUATION SHEET.

Title of Work ¥
Java 2 Standard Lidition, Version 5.0

Registration Number of the Basic Registration ¥ Year of Basic Registration ¥

TX 6-066-538 2004

Name(s) of Author(s) ¥ Sun Microsystems, Inc. Name(s) of Copyright Claimant(s) ¥
C()msys_ - The Carl Group Qun Micrasvatems, Inc.

PrO Unlimited ZAQ Elbrus MCST .

TelTech International Corp.
Location and Nature of Incorrect Information in Basic Registration ¥

Line Number _ Line Heading or Description R . L oo

Incorrect Information as It Appears in Basic Registration ¥

Corrected Information ¥

’ -

Explanation of Correction ¥

Location and Nature of Information in Basic Registration to be Amplified ¥

1 Line Heading or Description IZIAUC (lu‘llpW()rk U

Line Number 4

Amplified Information and Explanation of Information ¥

The following titles were inadvertently omitted from the basic registration and should be added as
alternative titles of the work:

Java 2 Standard Edition 5.0 Development Kit

Java 2 Platform Standard Edition 5.0 Development Kit
J2SE Development Kit

JIDK 5.0

MORE ON BACK P« Complete all appiicable spaces (D-G) on the reverse side of this page. DO NOY W‘:ETE HERE

+ See detailed instruclions. = Sign the formn at Space £
Page 1 of

Case4:10-cv-03561-LB Documentl Filed@3t2H2&vBagel6l of 161 F
FEB.0 22005

FUNDS RECEIVED DATE

PN

ORM CA

EXAMINED BY: FOR
[COPYRIGHT
CORRESPONDENCE U OFFICE
_ USE
< ONLY
REFERENCE TO THIS REGISTRBATION ADDED TO
BASIC REGISTRATION S U NO

DO NOT WRITE ABOVE THIS LINE IF YOU NEED MOHE SPACE USE A SEPARATE CONTINUATION SHEET

((mtmuatmn of LJ Part B urU Part C

Correspondence: Give name and address o which correspondence about this application should be sent.
Ines Gonzalez, FEsq.
Feawick & West LLLP
801 California Street
Mountain View, CA 94041
Phone (050)335-7182 o Eax(650)938-5200 kmai igonzalez@fenwick.com

Deposit Account: If the registration fee is to be charged to a Deposit Account established in the Copyright Office, give name and number of Account

Name e e e
Account Numbvr R . e
Ce rhhcalmn" l lhc unde lslynLd he r(*lwy ce xllfy (lml I am Hn « lu(k (mly nm)

U author W owner of exclusive right(s) Sun MiCl‘()%‘yglCl]H Inc.

U other copyright claimant Mduly authorized agentof _ -~ A
Name of autior or other u)pyu},nl claimant, or owner of exciusive nym(s) A

of the work identified in this application and that the stalements made by me in this application are correct to the best of my knowledge.

Typed orprinted name ¥ " Marilyn E. Glaubensklee, Assistant General Counsel Date ¥ //J//JS”

Handwritten signature (X) ¥ ,, V\w

Certificate i;qdme v ' 7 « Complete all necossary spaces
« Sign your application in Space T

xg’if;ﬁ o Susanne S. Morales, Paralegal / Tienwick & West LLP SEULULE R _
- - IN THE SAME PACKAGE: -

1. Application form

window Number/Streevapt W
envelope 2. Nonrefundable filing fee in chock ot
oP 801 California Sl reet money order paynbfc 1o Hegister of
to this ~ . . Copyrights
address: (“y/s\mg/zu) v MAIL TO: T
Library of Gungrrss

Mountain View, CA 94041 Copyaght Office
101 Independense Avenue, 8 |

Washington, D (. 20654 6000

17 U.S.C. 8 506(e): Any parson who knowingly mikes a false representation of a mitedal lact n the application for copyright registration provided for by section 409, or in any writlen statement filed
with the application, shall be: fined not more than $2,500
Hew Judy 2002 220 000 Waeh Blov ody 20072 BPrantad on roeuslind nanes VO et Thintiess £ L 3000 A

Feos are subjacl o
change. For currenl
lees, chack (he
Copyright OHice
websde al
www_copyright.gam,
write the Copyright
{tica, or calt
(202) 7073000

wtin connection

G AU Ny

	Complaint
	Exhibit A US6125447
	Exhibit B US6192476
	Exhibit C US5966702
	Exhibit D US7426720
	Exhibit E patre38104
	Exhibit F US6910205
	Exhibit G US6061520
	Exhibit H
	Exhibit H-1 J2SE 1.4 Copyright Cert
	Exhibit H-2 J2SE 5.0 Copyright Cert
	Exhibit H-3 J2SE 5.0 Suppl Copyright Cert

