

SUPPLEMENTAL DECLARATION OF TRUMAN FENTON CIVIL ACTION No. CV 10-03561

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

DONALD F. ZIMMER, JR. (SBN 112279)
fzimmer@kslaw.com
CHERYL A. SABNIS (SBN 224323)
csabnis@kslaw.com
KING & SPALDING LLP
101 Second Street - Suite 2300
San Francisco, CA 94105
Telephone: (415) 318-1200
Facsimile: (415) 318-1300

SCOTT T. WEINGAERTNER (Pro Hac Vice)
sweingaertner@kslaw.com
ROBERT F. PERRY
rperry@kslaw.com
BRUCE W. BABER (Pro Hac Vice)
bbaber@kslaw.com
KING & SPALDING LLP
1185 Avenue of the Americas
New York, NY 10036-4003
Telephone: (212) 556-2100
Facsimile: (212) 556-2222

Attorneys for Defendant
GOOGLE INC.

IAN C. BALLON (SBN 141819)
ballon@gtlaw.com
HEATHER MEEKER (SBN 172148)
meekerh@gtlaw.com
GREENBERG TRAURIG, LLP
1900 University Avenue
East Palo Alto, CA 94303
Telephone: (650) 328-8500
Facsimile: (650) 328-8508

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.

Plaintiff,

v.

GOOGLE INC.

Defendant.

Case No. 3:10-cv-03561-WHA

SUPPLEMENTAL DECLARATION OF
TRUMAN FENTON

Dept.: Courtroom 9, 19th Floor

Judge: Honorable William Alsup

Tutorial: April 6, 2011, 1:30 p.m.

Hearing: April 20, 2011, 1:30 p.m.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page1 of 64

DECLARATION OF TRUMAN FENTON CIVIL ACTION No. CV 10-03561

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

I, Truman Fenton, hereby declare and state as follows:

1. I am an attorney with the law firm of King & Spalding LLP, which is counsel of

record for Google Inc. I have personal knowledge of the facts set forth in this declaration unless

otherwise noted, and, if called to do so, I could and would competently testify thereto.

2. Exhibit G is a true and correct copy of John Gough, Virtual Machines, Managed

Code and Component Technology, at 1-2 (IEEE 2005) obtained from the CiteSeerX scholarly

document repository hosted by Pennsylvania State University.

3. Exhibit H is a true and correct copy of John Aycock, A Brief History of Just-In-

Time, 35 ACM Computing Survs. 97 (June 2003) obtained from the Association for Computing

Machinery website.

4. Exhibit I is a true and correct copy of excerpts of Plaintiff’s Responses and

Objections to Defendant Google Inc.’s First Set of Interrogatories to Plaintiff Oracle America,

Inc. (Nos. 1-10).

5. Exhibit J is a true and correct copy of Steve Lohr, Software War Pits Oracle vs.

Google, N.Y. Times, August 30, 2010, obtained from Westlaw.

6. Exhibit K is a true and correct copy of FoxBusiness.com, “Google Android,

Video Games Dominate Mobile World Congress,” http://www.foxbusiness.com/technology/

2011/02/21/google-android-video-games-dominate-mobile-world-congress/ (Feb. 21, 2011)

obtained from the FoxBusiness.com website at on Mar. 31, 2011.

7. Exhibit L is a true and correct copy of WSJ.com, “Mobile World Congress:

Google’s Android Big in Barcelona,” http://online.wsj.com/search (Feb. 17, 2011) obtained from

the WSJ.com website on March 31, 2011 by navigating to the WSJ.com website, entering

“Google Android Barcelona” in “Search for” box; clicking “Search”; and selecting the link

entitled “Mobile World Congress: Android Big in Barcelona.”

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page2 of 64

2

SUPPLEMENTAL DECLARATION OF TRUMAN FENTON CIVIL ACTION No. CV 10-03561

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

8. Exhibit M is a true and correct copy of a post on Jonathan Schwartz’s Blog

entitled “Congratulations Google, Red Hat and the Java Community” that is dated Nov. 5, 2007.

This document was obtained from http://blogs.sun.com/jonathan/entry/congratulations_google

on Mar. 31, 2011.

9. Exhibit N is a true and correct copy of excerpts of J. Gosling et al., The NeWS

Book at 19 (Springer-Verlag 1989).

10. Exhibit O is a true and correct copy of a newsgroup message posted by James

Gosling entitled “Re: Eolas acquires milestone internet software patent” and dated Aug. 21,

1995. This document was obtained from the World Wide Web Consortium (W3C) website on

November 11, 2010.

11. Exhibit P is a true and correct copy of excerpts from the Microsoft Press

Computer Dictionary 374 (2d ed. 1994).

12. Exhibit Q is a true and correct copy of excerpts from David Gries, Compiler

Construction for Digital Computers at 244-45 (John Wiley & Sons, Inc. 1971).

I declare under penalty of perjury under the laws of the United States of America that the

foregoing is true and correct and that this declaration was executed this 31th day of March, 2011,

in Austin, Texas.

Dated: March 31, 2011

 Truman Fenton

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page3 of 64

EXHIBIT G

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page4 of 64

Virtual Machines, Managed Code and Component Technology

John Gough
Queensland University of Technology

Brisbane, Australia

Abstract

Abstract machines have been used as an implementation
mechanism for programming languages for more than thirty
years. In their latest incarnation execution engines based on
virtual machines offer “Managed Execution”. The implica-
tions of this change go far beyond the superficial advan-
tages of platform portability and go to the heart of software
reliability.

In this paper it is argued that managed execution plat-
forms such as the .NET Common Language Runtime and
the Java Virtual Machine form the only reasonable basis for
trustworthy component software. There is also an overview
of current research in this field, including the vexed ques-
tion of version evolution.

1. Introduction – A Brief History

The definition of abstract machines as a mechanism for
reasoning about programs goes back to the dawn of com-
puter science as we now understand it. The use of such ma-
chines to define program representation for compilers dates
back at least to Wirth’s “P-machine” in 1973[1]. The P-
machine was a stack-based abstract machine intended to de-
fine an intermediate form for the “portable” Pascal com-
piler. Porting the compiler to a new execution platform re-
quired the creation of a new “back-end” that transformed
the instructions of the abstract machine into the binary code
of the target machine. However, a standard part of the port-
ing process was to write an interpreter to simulate the P-
machine on the new target, as a first step in the bootstrap
process. This particular strategy had an unforseen conse-
quence when Kenneth Bowles at UCSD[2] dispensed with
the back-end and wrote tiny interpreters for the “P-Code”
hosted on the multitude of incompatible microprocessors
that were appearing in the early 1970s. The use of an ab-
stract machine in this context was pivotal because of the
simplicity of the interpreter that was needed. A further
benefit was the extremely high code density that P-Code

achieved — a very important factor in the days of tiny mem-
ories.

The P-machine was designed to support just one pro-
gramming language, although it was expressive enough to
support some other languages also. A later development of
the concept was U-Code[3] which was used as an interme-
diate form for a number of mainstream commercial com-
pilers for several languages on many target machines. With
U-Code, as with P-Code, the operational semantics of the
instructions are defined by an abstract stack-based automa-
ton. It may be argued that the main role of the abstract ma-
chine at this time was one of compiler factorization. By us-
ing the common intermediate form, the problem of com-
piling N different languages for M different machines is
reduced to producing N “front-ends” and M “back-ends”
rather than N × M monolithic compilers.

A typical expression evaluation in such a system would
be fetching the value of a 8-byte floating point field b of
some structure a. Typical code for a stack machine of the
era would be—

ldadr ‘a’ // load address of ‘a’
ldc.i4 4 // offset of field ‘b’
padd // pointer arithmetic
deref.r8 // load 8-byte real

Several things are worth noting at this stage: the front-end
apparently needs to know the layout of the structure on the
target machine, and the language is untyped except for the
integer/floating point separation. Although front-ends based
on this scheme produced “portable” code, the output was
generally parameterized for each target machine. My own
Gardens Point compilers were typical[4]. They required to
know the following target information: alignment rules, ar-
gument assembly conventions, stack mark size and which
of three possible methods were used for passing structures
by value.

Abstract machines have also played an important part in
the implementation of specialist languages. The Warren Ab-
stract Machine[5] for the Prolog language is a typical ex-
ample. There are at least two factors at work here. Lan-
guages that have dynamic aspects that make static compila-
tion unattractive have routinely used interpretation for their
implementation. The interpreter emulates an abstract ma-

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page5 of 64

chine that bridges the semantic gap between the source lan-
guage and the instructions of the host machines. Further-
more, the use of an intermediate language factors the im-
plementation problem when multiple machine architectures
are targetted.

So far, according to this brief history, abstract machines
have been used in two ways. A stream of instructions for an
abstract machine may be used, transiently, as an intermedi-
ate representation for program texts inside factored com-
pilers. Alternatively, the instructions for the abstract ma-
chine have been the end product of the compiler, to be sub-
sequently executed by an interpreter when the program is
run.

In 1989 a further possibility became apparent. In that
year the Open Software Foundation called for proposals
for an Architecture Neutral Distribution Form (ANDF) for
computer programs[6]. The idea was that programs written
in any source language would be compiled into an archi-
tecture neutral form, supported by the facilities of a stan-
dard environment. Each such program could be run on any
machine that possessed an “Installer” utility. The installer
would complete the compilation process by transforming
the ANDF into native code for the particular computer.

It is relevant to note that the demands of ANDF necessi-
tate a higher level of abstraction than is the case for U-Code
and similar abstract machine forms. In this case there can be
no “parameterization of output for the target machine” since
the target is unknown at compilation time. Such matters as
the layout of structures needs to be deferrred for the installer
to decide. The code of our previous code snippet needs to
contain symbolic information. Something along the follow-
ing lines is needed, where we have arbitrarily assumed that
the type of a is AType from module Mod—
ldadr Mod.AType::‘a’ // load adr of ‘a’
ldfld real64 Mod.AType::‘b’// load field value

Consider the second instruction. Field names need to be
qualified with the type of the field and the type of the struc-
ture to which the field belongs. Furthermore, the distribu-
tion form must contain type declaration metadata sufficient
to allow the installer to lay out the data.

ANDF was not a success in the market, although most
compiler people agreed that it was a stunningly good idea.
At least part of the problem was the very high levels of
symbolic information that ANDF contained. Major software
vendors tended to be spooked by the fact that anyone with
an ANDF distribution could reconstruct fully typed, read-
able source code with minimal effort.

The next significant step in our saga arose from the
doctoral research of Michael Franz[7], a student at ETH,
Zurich. This work was continued later at UCI. Michael
gave a final twist to the installer idea by invoking the in-
staller each time the program was loaded, rather than just
once when the progam was installed on the machine. Nowa-
days, we would call the “installer” a just-in-time compiler

(JIT). The “slim binaries” that were the distribution for-
mat were for a single language (Oberon-2) but were used
unchanged on different architectures. The distribution form
was extremely compact, despite the necessary presence of
the metadata. The mind-blowing result from the research
was that the time saved in reading the smaller binary from
the disk more than compensated for the processor time to
perform code generation within the installer.

And then in May 1995 language Java was announced
by Sun Microsystems[9]. The distribution format of Java is
part of the definition of the language, and is based on an
abstract machine: the Java virtual machine (JVM)[8]. Java
was always intended to be executed either by interpreta-
tion or by JIT compilation, and still is. The output of the
Java compiler is one or more “class” files for every Java
source file. Each such class file contains the “bytecodes”
that are the instructions for the stack-based virtual machine
together with the metadata that is necessary to allow true
target independence. The new element that Java added to
the abstract machine story was verification. Since all user-
declared data is statically typed in every class file it is pos-
sible to use a lightweight “theorem prover” to check that
the code is type-safe and hence memory-safe. Now, every
legal Java program is necessarily type-safe so it may ap-
pear to be overkill for the JIT to re-check what the com-
piler has already guaranteed. This would certainly be the
case if the class-files were only a transient intermediate rep-
resentation between compiler phases. However, the genera-
tion of the class files and the invocation of the JIT are sepa-
rated both temporally and spatially. The browser that down-
loads a “Java” class file as a component of an applet cannot
trust that the bytecodes were generated by a correct com-
piler, nor that the code has not been modified either acci-
dentally or with evil intent.

The JVM was designed with the goal of supporting just
one language: Java. Nevertheless with more or less diffi-
culty the JVM can support (type-safe subsets) of an alarm-
ingly long list of languages.

The final event in our brief history took place in mid-
2000, when Microsoft announced their .NET system. This
system is supported by the Common Language Runtime
(CLR), another stack-based abstract machine. It features a
more expressive type system than Java, and is explicitly de-
signed to support a wide range of languages — including
those that are type-safe and those that are not. The type-safe
ones can be verified by the JIT while the the type-unsafe
ones skate on the same thin ice as any other binary pro-
gram representation. The authoritative source on the Com-
mon Language Infrastructure which includes the CLR, is
the annotated standard[10].

Generically we refer to the CLR and the JVM are being
managed execution systems. They are managed in the sense
that the final translation to machine code is controlled by

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page6 of 64

the explicit type and accessibility declarations that reside in
the metadata of the distribution form. Data is also managed
in the sense that objects are allocated and later deallocated
by a trusted garbage collector within the runtime. The ab-
sence of explicit deallocation (and re-allocation) of memory
is a precondition of any proof of type- and memory-safety
in such systems. An early comparison of the two virtual ma-
chines is the paper[11].

2. Why Managed Execution?

Both .NET and Java have become key technologies in
the contemporary software world. This success may appear
paradoxical since both systems suffer from the same issues
that doomed ANDF. Despite the best efforts of the “code ob-
fuscators” decompilation of code is still possible. We must
conclude that there are other advantages that counter the
risks of including symbolic content with the distribution.
The things that are different between 1989 and 2005 are
the “world-wide web”, web services, and the emergence of
component technology.

The importance of the web to the success of managed
execution platforms seems indisputable. In the case of Java
the possibility of writing browser applets drove the early up-
take of the language, while web services featured in all of
the early .NET publicity1. Despite all of this emphasis on
easy access to the web, and the lure of software portabil-
ity, it is contended here that the real importance of managed
execution derives precisely from the fact that it is managed.

Here is the main claim of this paper —
Managed execution provides the only resonable basis on
which the promise of component technology may be real-
ized.

2.1. Component Technology

The term component technology has acquired somewhat
overloaded semantics so it should be clarified that in this pa-
per the term is used in the sense of Szyperski[12]. That is —
“Software components are binary units of independent pro-
duction, acquisition and deployment that interact to form a
functioning system”. Components are thus —

• units of independent deployment

• units of third-party composition

• deployed in binary form

The key issue of component technology, in this context, is
the software engineering means by which third parties may

1 Indeed the last of the code-names used within Microsoft for what be-
came .NET was the excruciating NGWS, an initialism for “next gener-
ation web services”.

compose binary components to create programs that are ro-
bust and perhaps even correct. It might be added that a fur-
ther challenge is to ensure that such programs continue to
operate correctly in the face of the evolution of their com-
ponent parts. This last element is discussed in Section 4.

The traditional means by which software complexity has
been tamed is by the use of abstraction. That is, parts of the
program are replaced by abstract representations, thus lim-
iting the domain of analysis that is required to reason about
the behaviour of the whole. Implicit in the validity of this
approach is the naı̈ve belief that the abstraction captures all
of the interactions that propagate across the boundaries of
the program parts. Many of the advances in programming
languages in the last 30 years have been introduced to pro-
gressively increase the accuracy of the abstract representa-
tions and hence reduce the naı̈vity of the belief. Three brief
examples will suffice to make the point —

• modular languages guarantee that functions may only
be called with correctly typed arguments

• fully type-safe languages guarantee that pointer refer-
ents can only be of the declared type

• languages with declarative accessibilty control enforce
the need to know principle

Every practising software engineer is familiar with the may-
hem that results when these guarantees break down, as a re-
sult of memory deallocation faults for example.

Perhaps the most elaborate example of this approach to
software design is the “design by contract” methodology
incorporated into the programming language Eiffel. In this
case software parts may be annotated with contracts in the
form of preconditions, postconditions and invariants. These
contracts are then enforced by a mixture of compile-time
and run-time checks. The evidence seems to be that such
mechanisms do indeed allow extremely robust and trustwor-
thy software to be constructed.

All of this, so far, has been good news about which soft-
ware engineers may be justly proud. The bad news is that all
of the guarantees and safeguards described above are virtu-
ally useless in the context of component software!

Consider the simple example of a program component
which depends for its correctness on the fact that a par-
ticular field of some object type may only be changed by
the code at one program point. Such fields are safeguarded
by being declared private. Unfortunately, if references to
the enclosing object are accessible to other components the
field may be mutated either through program error or by ma-
licious intent. Declarative privacy counts for nothing in a bi-
nary component environment. Recall, for example, that the
buffer overflow exploits that are a commonplace in vandal-
ware seek to mutate function return addresses. In such cases
the target location is so “private” that high level languages
do not even have a mechanism to refer to the datum.

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page7 of 64

The issue is that all of the safeguards based on program-
ming language mechanisms depend on the compiler for en-
forcement. With binary deployment of components, partic-
ularly those produced by third parties, neither the compiler
nor the integrity of the deployment mechanism are a given.
This is precisely the problem that managed execution uses
verification to solve.

2.2. Safety and Security

It is important to distinguish between the separate con-
cerns of safety and security. Memory safety and its pre-
requisite type-safety are necessary preconditions for forms
of program analysis based on abstraction. We need to be
able to reason piecewise about the behaviour of program
components secure in the knowledge that components do
not invalidate each others declarative invariants. This safety
guarantee is precisely that which verified, managed execu-
tion provides.

Security is quite another matter. Both of the managed ex-
ecution systems that we consider provide security mecha-
nisms that regulate the security-relevant actions that partic-
ular components may perform. It is interesting to note that
checking of security permissions requires a costly traver-
sal of the whole chain of activation records, that is, a stack
walk. This is necessary since it is not the permissions of a
particular function that is in doubt, but the permissions of
the complete chain of callers on whose behalf the function
has been invoked.

Security is a separate concern to memory safety. The fact
that the verifier has guaranteed the type-safety of an ap-
plet is of little consolation after the applet has reformatted
the disk. Nevertheless, the enforcement of memory safety
is a necessary foundation for a separate security mecha-
nism. Consider the possible modes of attack against a stack-
walking security permission checker. One exploit would be
to falsify the permissions that a piece of code possesses. An-
other might be to falsify the call chain record by overwrit-
ing a return address. Both of these attacks are impossible in
a verified, managed execution environment.

A more plausible security exploit involves managed code
calling out to native (unmanaged) code. Once beyond the
oversight of the verifier, anything goes. For this reason
permission to invoke unmanaged code must be carefully
guarded and sparingly granted in managed execution sys-
tems.

Some people find it somewhat artificial that discussions
of such matters as type-safety are conducted in the language
of conflict. We reason about “attackers” and try to remove
“security vulnerabilities”. This is neither a sign of paranoia,
nor a preoccupation with fantasy games. If the invariants of
a component are safe against an attacker with malicious in-

tent, then the same invariants are safe against accidental vi-
olation by program errors in other components.

3. Some Research Issues

Managed execution systems, as they currently exist, en-
force the constraints of the type declarations of the pro-
grams that they execute. This is sufficient to ensure mem-
ory safety of programs, and to ensure the absence of certain
kinds of interference between components. To achieve even
this is an important advance, however the kinds of invari-
ants that can be guaranteed by such mechanisms are syn-
tactic and static. There is a fascinating spectrum of open
research possibilities that might broaden the range of pro-
gram properties that managed execution might ensure.

There are also interesting research issues that have to do
with the implementation of such systems.

3.1. Implementation Issues

Publicly accessible source code for both Java and
CLR implementations exist, facilitating research on lan-
guage compilers and JIT compilers. The question of which
optimizations should be performed by each kind of com-
piler is still the subject of some experimentation, and could
very well have a different answer for the CLR and the JVM.

Reliance on just-in-time compilation also brings with it
the possibility, or should that be the challenge, of using
the extra information available at runtime to generate faster
code than is possible in an “ahead-of-time” compiler. The
field of dynamic compilation and optimization is very ac-
tive one with products starting to move from the laboratory
to the mainstream.

A more basic kind of investigation involves the mecha-
nisms of verification. It turns out that the algorithm spec-
ified for verification in Java can become computationally
costly in some pathological cases. Alternative methods of
verification based on “proof carrying code” seem promis-
ing.

Of course, it is always necessary to ensure correctness
of the algorithms (and of their implementation) that man-
aged execution relies on. The issues can be subtle. Here is
a favourite example that nicely illustrates the subtle issues
involved. One of the features of the Common Type System
(CTS) of the CLR is the possibility to mark instance fields of
structured types as initonly. The idea is that such fields are
initialized at object creation, and are afterward immutable.
This is a really useful feature in practice, since programs
may be designed to use such fields to hold identity data,
permissions and the like. In C# we mark such fields as read-
only —

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page8 of 64

public class C {
public readonly long serialNm;
...
public C(long sn) { // Constructor

serialNm = sn; // assign immutable value
...

Compiling for the .NET Common Language Runtime[13]
correctly warned that in the first release of .NET the C#
compiler enforced this constraint but the verifier did not.
As might be hoped, later releases of the CLR refuse verifi-
cation to programs that attempt to mutate an initonly field.

In the description of what initonly means, the wording
“... and is afterward immutable” seems perfectly clear, but
is not the kind of rule that a verifier may check directly.
What we need is an operational formulation of a test that
checks this constraint. Here is a candidate set —

• initonly fields may only be set within a constructor for
their enclosing type

• constructors may only be called as part of the creation
of an object of the type, or as part of the creation of an
object of a derived type

The “or as” part of the second rule is necessary, since when
an object of a derived type is being constructed the (perhaps
private) fields of the base type must be initialized by invok-
ing a base class constructor on the newborn object of the
derived type.

It turns out that the candidate rule set is insufficient, since
it does not prevent a constructor from being called more
than once on the same object. Here is an exploit2 which mu-
tates an initonly field, even in the presence of the candidate
rule set —
public class D : C { // D derives from C
...
public D(C victim, long newVal) {

ldarg.0 // push ‘this’ ref.
ldarg.2 // push newVal arg
call instance void C::’.ctor’(int64)
ldarg.1 // push victim ref.
ldarg.2 // push newVal arg
call instance void C::’.ctor’(int64)

}
The body of the constructor for type D is shown in Com-
mon Intermediate Language (CIL), where calls to construc-
tors use the invariable name “.ctor”.

D is a dummy class, we only use objects of this type
to do our dirty work. The trick is that we have passed in
the victim object of type C as an argument to the dummy
constructor. The second rule above does not forbid us from
passing this argument to a call of the base class construc-
tor along with the new value for the supposedly immutable
field. We cannot express this behaviour in C#, so the body

2 I am happy to share this exploit, since it does not work any more!

of the above code snippet shows how it reads in CIL lan-
guage. As a former, security-guru colleague of mine used
to say “To be good at this stuff you need to have the crimi-
nal mind”. In any case the third rule that is needed is —

• base class constructors may only be invoked on the
newborn object within a constructor for a derived class

The first three lines of the constructor body in the code snip-
pet are legal, and indeed are compulsory. These lines invoke
the base class constructor on “arg.0”, which is the location
of the reference to the object under construction. The rather
similar looking second call in the code is illegal according
to this new rule as “arg.1” is the incoming argument, that is,
the intended victim of the exploit3.

3.2. More Expressive Type Systems

One approach to strengthening the guarantees of man-
aged execution involves extension of the type-system. An-
other category of research involves the addition of such
things as program assertions and protocol checks to the
platform-enforced repetoire.

In essence, current managed execution systems enforce
the declarative constraints of the type systems of their
hosted programs. In principle any declarative aspect of a
type system that is capable of being checked by an effec-
tive procedure might be added to the execution engine.

Here is a simple example. Languages such as Ada and
Pascal provide for the declaration of subrange types, the
values of which are restricted ranges of some whole-number
type. It is usual for the compiler to ensure that every assign-
ment of a new value to a datum declared to be of such a type
respects the constraint. In a single language, known com-
piler environment consumers of such types do not need to
perform range tests on values of the type. In a multi-vendor
component environment no such trust could be justified, but
a managed execution engine could statically guarantee en-
forcement of the value constraints. As it turns out neither
of our example managed platforms provides for subrange
types in their underlying type system, and it is hard to make
a strong case for such an introduction, given the low cost of
range testing at the point of use.

The more interesting issue of execution engine enforce-
ment of program invariants such as pre- and post-conditions
has received some attention. Nam Tran’s doctoral research
at Monash University has involved implementing Eiffel-
like contracts with the support of a modified version of the
“shared source” version of the CLR.

Almost all of the enforcement of managed execution sys-
tems have to do with static features of the type system. Ac-
cessibility constraints, conformance to the rules of sub-type

3 And of course if you are wondering, overwriting “arg.0” by “arg.1”
doesn’t get past the verifier either!

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page9 of 64

polymorphism, and fulfilment of contracts to implement
named interfaces, are the kinds of things that are guaran-
teed. There are a whole range of dynamic issues that relate
to correctness of component systems. These dynamic rules
may be expressed in terms of protocols. Protocols specify
such things as rules that certain methods may only be called
if other calls have preceeded the call in certain allowed pat-
terns. It is known that in some cases the rules cannot be de-
scribed in terms of finite state machines. The understand-
ing of such rules is an active area of research. An asso-
ciated open question is — how can such protocols be en-
forced within a component framework that allows for third
party composition of systems?

Finally, it may be noted that both of our example man-
aged execution systems have announced enhancements to
their underlying type systems to support parametric poly-
morphism, or “generics” as it is more commonly called. Sun
Microsystems and Microsoft have adopted very different
implementation strategies for this very significant enhance-
ment. Sun has chosen to take a less efficient implementa-
tion mechanism, but one that leaves the JVM unchanged.
Microsoft has enhanced the CLR with some additional in-
structions and lots of new metadata so that the JIT can spe-
cialize code for particular instantiations of generic types.

4. Version Evolution

Software evolution is one of the difficult issues of our
time. As many an elderly COBOL programmer remarked in
the late 1990s “Nobody expected this software to be around
for so long”. In the past the problems have been less for
monolithic software, particularly where programs are stat-
ically linked. However for distributed software, and even
more so for component software the problems of version
evolution have become acute. This is a problem that has re-
ceived a lot of attention within the Microsoft world, but no
component system can ignore these issues.

The rest of this section summarizes some informal dis-
cussions. Credit for the key ideas of these proposals be-
longs to Chris Brumme, Patrick Dussud, Anders Hejlsberg,
Jim Miller, Clemens Szyperski, Tony Williams and others
within Microsoft. Raising of these topics publicly should
not be taken as any kind of endorsement of the proposal by
Microsoft, nor as a committment to implement any of these
ideas in any future product.

4.1. The Perils of Registry

One of the most difficult problems for component based
systems is that of version evolution. The problem is famil-
iar to Windows system administrators. Pre-.NET component
systems share dynamically linked libraries (DLLs) the iden-
tity and location of which is held in a global registry. A typi-

cal problem arises when a newly installed application brings
with it a new version of a DLL that is used by an existing ap-
plication. After installation of the new program some appar-
ently unrelated program breaks. Re-installation of the bro-
ken program restores that program’s functionality, but the
previously installed program now does not work. This situ-
ation is colloquially known as “DLL Hell”. It is caused by a
failure of backward compatibility in the evolution of the li-
brary that is shared by the two applications.

Such a backward compatability failure does not neces-
sarily indicate incompetence on the part of the software
provider. It is an unfortunate fact that programs sometimes
depend on library behaviours that are outside that specified
in the application programming interface (API), that is, they
rely on undocumented behaviour. Furthermore it is some-
times necessary to modify even the documented behaviour,
for example to eliminate a security vulnerability. In any case
the problem is particularly difficult in systems that rely on
global registries.

The problems of DLL-hell are lessened in the .NET
framework, which provides for “side-by-side” execution. In
this system the identity of loadable assemblies depends on
a four-part version number, and a cryptographically strong
originator signature. Every application may set a policy that
allows it to choose between the latest version of a shared
library, or to insist on one exact version. There are sev-
eral intermediate policy possibilities. All of the various li-
brary versions may co-exist in the “global assembly cache”
(GAC), and simultaneously executing applications may run
different versions of the same library “side-by-side” as the
name implies. More to the point for component based sys-
tems different components of the same application may use
different versions of the same library. This possibility effec-
tively uncouples the version dependencies of the different
components.

The .NET system makes DLL-hell a thing of the past, or
at least a thing of a rapidly receding present. Sadly how-
ever any belief that the version evolution problem is now
fully solved is premature. The problem is that not all as-
semblies may be executed side-by-side. For example, if a
library controls some unique resource of the machine then
only one version may run concurrently. Such a library must
be shared, and different versions cannot execute side-by-
side. Worse still, as more of the operating system software
migrates to managed code, more of the system-supplied ob-
jects will lock in particular versions of their defining types.

Conflicts between components may be indirect. Suppose
two components depend on different versions of the same
shared library, A say. Let us further suppose that library
A is intended to to permit side-by-side execution. Unfor-
tunately, if different versions of A depend on different ver-
sions of some second library, B say, then if B does not sup-
port side-by-side execution, then neither can A. It seems

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page10 of 64

that as DLL-hell recedes, GAC-hell looms on the horizon.

4.2. Platform and Library Types

It is likely that the problems of version evolution are fun-
damentally intractable, but there are some interesting ap-
proaches for at least managing the problem. In particular,
it is important to lessen the domino effect caused by chains
of dependencies between library components as described
above.

One possibility receiving some debate currently involves
adding a new declarative attribute to type definitions. At its
simplest the idea is to mark every type as being either a plat-
form type or a library type. Each denotation implies a con-
tractual obligation as to future evolution. Library types are
free to evolve between versions, but guarantee that differ-
ent versions will be able to execute side-by-side. Platform
types are bound to a much higher level of compatability. Ap-
plications do not have a choice as to the version of a plat-
form type that they use. As the name implies, the software
must use whatever version of the type that the platform sup-
plies, and all components on the machine will use the same
version.

Platform types are not capable of side-by-side execution,
either because they depend on a non-sharable resource, or
because they are locked by a dependency on the underlying
operating system or even the CLR version. For example the
character string type System.String must be a platform type,
since the type is built in to the execution engine.

Dependencies The constraints on the dependencies be-
tween the two categories of types can be easily deduced.

Library types may freely depend on platform types. They
may use platform types in the implementation of their own
behaviour, and may expose platform types in their visible
interface. Any such dependency does not constrain the evo-
lution of the type, nor does it add further dependencies to
users of the type. Library types may also depend on other
library types. This will make the type dependent on a par-
ticular version of the other types. If the “other” library types
are not exposed in the visible interface of the type, then the
users of the type do not become contaminated by spurious
version dependencies. In a typical scenario several library
types would be defined in a single library. These types will
depend on each other, but will evolve together, compatibly,
as their containing library evolves.

Platform types, on the other hand, are bound by a stricter
regime. A platform type may depend on library types in its
implementation, if necessary it can deploy with the library
version that it requires. However, a platform type must never
expose any library type in its visible interface. Thus for such
types every public field, every formal argument of a pub-
lic method and every return type must be a platform type.

A platform type cannot derive from a base class that is a li-
brary type, nor may it implement an interface that is a li-
brary type. Rather less obviously platform types may not
allow library methods to escape in (for example) arrays of
System.Object or onto a system clipboard.

Using Platform and Library Types The separation be-
tween platform and library types only becomes significant
at the boundaries of software components. Creators of com-
ponents will expect their components to have to use what-
ever version of the platform types that the platform offers.
But since every other component of the application will nec-
essarily use the same version, there is no possibility of con-
flict.

Components may use library types of their own choos-
ing to implement their own behaviour. They will thereby ac-
quire a dependency on a particular library or libraries, but
they can deploy with the version of the library that they de-
pend on, and lock down that exact version if necessary. Pro-
vided that the component does not expose the dependency
to its users, there will be no conflict if another component
has locked in a different version of the same library type. In
effect, these constraints mean that components must inter-
act and communicate using only platform types. If, contrary
to this advice, components communicate by exchanging li-
brary types then the components must agree to use the same
exact library version. This clearly places a very strong lim-
itation on third-party composition of such components.

Designing Platform Types Platform types appear to be
more versatile, so it may appear attractive to make as many
types as possible platform types. This is not a good idea.
The evolution of platform types is necessarily slow and
painstaking. Platform types have contracted to maintain an
almost impossibly high level of backward compatability.
When a new version is released every existing application
will have to use it ... so it better just work. We may con-
clude that an extremely high level of quality assurance will
be needed to maintain platform types, and this will be ex-
pensive.

The challenge is that the required compatibility for plat-
form types is not just at the level of using the same method
signatures in the binary form, but at the behavioural level.
Every aspect of documented behaviour must be maintained
in new versions of the type. Conversely, any aspect of un-
documented behaviour visible to users provides the oppor-
tunity for user code to be broken by future version evolu-
tion.

Choosing to create a platform type should thus be ap-
proached with some caution. Since the users of the code
will be very upset if the behaviour ever changes the design
has to be right first time. And then, having designed it right,
the company needs to expensively maintain the type for as
long as it plans to stay in business.

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page11 of 64

4.3. But Will it Fly?

The separation of types into categories according to the
style of their evolution may or may not find its way into the
type systems of the mainstream managed platforms. Never-
theless, the very idea of such a separation is an important
tool in tackling versioning issues in component systems.
The concept, and the design rules that flow from it, have
a wider applicability to all large scale systems for which it
is necessary to upgrade subsystems piecewise. In that case,
even if all the sub-systems come from a single vendor, new
subsystem versions must interwork with other subsystems
that will be replaced at later times. The key lesson is to
tightly control the evolution of the types that cross the sub-
system boundaries.

Finally it may be noted that within the component world,
with third-party composition of independently developed
components, the type-safety guarantees of managed exe-
cution are critical to controlling the versioning problem. It
is also relevant to observe that managed execution systems
restrict the visibility of implementation artifacts, and thus
make it less likely that the user of a platform type can de-
pend on undocumented features of a particular version of
the type.

5. Concluding Remarks

This quick overview has reviewed the historical context
in which abstract machines have morphed into the currently
popular managed execution systems. The recital of the his-
tory goes some way towards explaining how the current sys-
tems came to use abstract machines to represent program
behaviour. Nevertheless, the notion of managed execution
(or alternatively metadata mediated execution) and the use
of abstract stack machine representations are independent.
In fact it may be argued that some slight advantage might be
gained by using a program representation other than the in-
structions for an abstract stack machine. Even the advantage
of high program density traditionally claimed for stack ma-
chines seems dubious, given the significant volume of meta-
data that must accompany the bytecodes in these systems.

Irrespective of the choice of instruction set, managed ex-
ecution systems with their reliance on symbolic metadata,
provide representations of program behaviour that are suit-
ably abstracted from the details of any particular machine.
In principle they provide for a level of software portabil-
ity that goes beyond anything previously achieved. This is a
one reason for the importance of such systems, but not the
most important.

The real importance of managed execution systems, and
their critical role in the future of software development de-
pends on the fact that they are managed. Managed execu-
tion provides for the enforcement of type- and memory-

safety in environments where the integrity of neither the
originating compiler nor the deployment mechanism may
be guaranteed. Memory safety is, in turn, the guarantee that
is required to ensure lack of interference between program
parts in a component framework. The enforcement of type-
system invariants is also an essential factor in managing ver-
sion evolution.

References

[1] K. V. Nori, U. Ammann, K. Jensen, H. H. Nageli and Ch. Ja-
cobi, “Pascal-P Implementation Notes” Ch. 9 in D. W. Bar-
ron (Ed), Pascal – the Language and its Implementation. J
Wiley, 1981.

[2] K. Bowles, Beginner’s Guide for the UCSD Pascal System,
Byte Books, 1980.

[3] D. R. Perkins and R. L. Sites, “Machine-indpendent Pas-
cal code optimization”. Proc. 1979 SIGPLAN symposium on
Compiler Construction, ACM, 1979.

[4] K. John Gough, “Multi-language, Multi-target Compiler De-
velopment”, JMLC, Linz Austria, March 1997. Also in Mod-
ular Programming Languages, H. Mössenböck (Ed), LNCS
No. 1204, Springer Verlag.

[5] Hassan Aı̈t-Kaci, Warren’s Abstract Machine: A Tutorial Re-
construction. MIT Press, 1991.

[6] S. Macrakis, “From UNCOL to ANDF: Progress in Standard
Intermediate Languages.” Technical Report, Open Software
Foundation Research Institute, 1993.

[7] M. Franz, Code Generation On-the-Fly: A Key to Portable
Software. Doctoral Dissertation No. 10497, ETH Zurich,
March 1994.

[8] T. Lindholm and F. Yellin, The Java Virtual Machine Speci-
fication. Addison-Wesley, Reading MA, 1997.

[9] Sun Microsystems, “Java Technology: the Early Years”
http://java.sun.com/features/1998/05/birthday.html

[10] J. Miller and S. Ragsdale, The Common Language Infras-
tructure Annotated Standard. Addison-Wesley, New York,
NY, 2004.

[11] K. John Gough, “Stacking them up: a Comparison of Virtual
Machines”. Australian Computer Systems and Architecture
Conference (ACSAC-2001), Gold Coast, Australia, Febru-
ary 2001.

[12] C. Szyperski, Component Software: Beyond Object Oriented
Programming. ACM Press and Addison-Wesley, New York,
NY, 1998.

[13] J. Gough, Compiling for the .NET Common Language Run-
time. Prentice-Hall, Saddle River, NJ, 2002.

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page12 of 64

EXHIBIT H

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page13 of 64

A Brief History of Just-In-Time

JOHN AYCOCK

University of Calgary

Software systems have been using “just-in-time” compilation (JIT) techniques since the
1960s. Broadly, JIT compilation includes any translation performed dynamically, after a
program has started execution. We examine the motivation behind JIT compilation and
constraints imposed on JIT compilation systems, and present a classification scheme for
such systems. This classification emerges as we survey forty years of JIT work, from
1960–2000.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors;
K.2 [History of Computing]: Software

General Terms: Languages, Performance

Additional Key Words and Phrases: Just-in-time compilation, dynamic compilation

1. INTRODUCTION

Those who cannot remember the past are con-
demned to repeat it.

George Santayana, 1863–1952 [Bartlett 1992]

This oft-quoted line is all too applicable
in computer science. Ideas are generated,
explored, set aside—only to be reinvented
years later. Such is the case with what
is now called “just-in-time” (JIT) or dy-
namic compilation, which refers to trans-
lation that occurs after a program begins
execution.

Strictly speaking, JIT compilation sys-
tems (“JIT systems” for short) are com-
pletely unnecessary. They are only a
means to improve the time and space ef-
ficiency of programs. After all, the central
problem JIT systems address is a solved
one: translating programming languages

This work was supported in part by a grant from the National Science and Engineering Research Council of
Canada.
Author’s address: Department of Computer Science, University of Calgary, 2500 University Dr. N. W., Calgary,
Alta., Canada T2N 1N4; email: aycock@cpsc.ucalgary.ca.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires
prior specific permission and/or a fee.
c©2003 ACM 0360-0300/03/0600-0097 $5.00

into a form that is executable on a target
platform.

What is translated? The scope and na-
ture of programming languages that re-
quire translation into executable form
covers a wide spectrum. Traditional pro-
gramming languages like Ada, C, and
Java are included, as well as little lan-
guages [Bentley 1988] such as regular
expressions.

Traditionally, there are two approaches
to translation: compilation and interpreta-
tion. Compilation translates one language
into another—C to assembly language, for
example—with the implication that the
translated form will be more amenable
to later execution, possibly after further
compilation stages. Interpretation elimi-
nates these intermediate steps, perform-
ing the same analyses as compilation, but
performing execution immediately.

ACM Computing Surveys, Vol. 35, No. 2, June 2003, pp. 97–113.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page14 of 64

98 Aycock

JIT compilation is used to gain the ben-
efits of both (static) compilation and inter-
pretation. These benefits will be brought
out in later sections, so we only summa-
rize them here:

—Compiled programs run faster, espe-
cially if they are compiled into a form
that is directly executable on the under-
lying hardware. Static compilation can
also devote an arbitrary amount of time
to program analysis and optimization.
This brings us to the primary constraint
on JIT systems: speed. A JIT system
must not cause untoward pauses in nor-
mal program execution as a result of its
operation.

—Interpreted programs are typically
smaller, if only because the represen-
tation chosen is at a higher level than
machine code, and can carry much more
semantic information implicitly.

—Interpreted programs tend to be
more portable. Assuming a machine-
independent representation, such as
high-level source code or virtual ma-
chine code, only the interpreter need be
supplied to run the program on a differ-
ent machine. (Of course, the program
still may be doing nonportable opera-
tions, but that’s a different matter.)

—Interpreters have access to run-time
information, such as input parame-
ters, control flow, and target machine
specifics. This information may change
from run to run or be unobtainable
prior to run-time. Additionally, gather-
ing some types of information about a
program before it runs may involve al-
gorithms which are undecidable using
static analysis.

To narrow our focus somewhat, we
only examine software-based JIT systems
that have a nontrivial translation aspect.
Keppel et al. [1991] eloquently built an ar-
gument for the more general case of run-
time code generation, where this latter re-
striction is removed.

Note that we use the term execution in
a broad sense—we call a program repre-
sentation executable if it can be executed
by the JIT system in any manner, either

directly as in machine code, or indirectly
using an interpreter.

2. JIT COMPILATION TECHNIQUES

Work on JIT compilation techniques often
focuses around implementation of a par-
ticular programming language. We have
followed this same division in this sec-
tion, ordering from earliest to latest where
possible.

2.1. Genesis

Self-modifying code has existed since the
earliest days of computing, but we exclude
that from consideration because there is
typically no compilation or translation as-
pect involved.

Instead, we suspect that the earliest
published work on JIT compilation was
McCarthy’s [1960] LISP paper. He men-
tioned compilation of functions into ma-
chine language, a process fast enough that
the compiler’s output needn’t be saved.
This can be seen as an inevitable result of
having programs and data share the same
notation [McCarthy 1981].

Another early published reference to
JIT compilation dates back to 1966. The
University of Michigan Executive System
for the IBM 7090 explicitly notes that the
assembler [University of Michigan 1966b,
p. 1] and loader [University of Michigan
1966a, p. 6] can be used to translate and
load during execution. (The manual’s pref-
ace says that most sections were written
before August 1965, so this likely dates
back further.)

Thompson’s [1968] paper, published in
Communications of the ACM, is frequently
cited as “early work” in modern publi-
cations. He compiled regular expressions
into IBM 7094 code in an ad hoc fashion,
code which was then executed to perform
matching.

2.2. LC2

The Language for Conversational Com-
puting, or LC2, was designed for in-
teractive programming [Mitchell et al.
1968]. Although used briefly at Carnegie-
Mellon University for teaching, LC2 was

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page15 of 64

Brief History of Just-In-Time 99

Fig. 1 . The time-space tradeoff.

primarily an experimental language
[Mitchell 2000]. It might otherwise be
consigned to the dustbin of history, if
not for the techniques used by Mitchell
in its implementation [Mitchell 1970],
techniques that later influenced JIT
systems for Smalltalk and Self.

Mitchell observed that compiled code
can be derived from an interpreter at run-
time, simply by storing the actions per-
formed during interpretation. This only
works for code that has been executed,
however—he gave the example of an if-
then-else statement, where only the else-
part is executed. To handle such cases,
code is generated for the unexecuted part
which reinvokes the interpreter should it
ever be executed (the then-part, in the
example above).

2.3. APL

The seminal work on efficient APL
implementation is Abrams’ disserta-
tion [Abrams 1970]. Abrams concocted
two key APL optimization strategies,
which he described using the connotative
terms drag-along and beating. Drag-along
defers expression evaluation as long as
possible, gathering context information in
the hopes that a more efficient evaluation
method might become apparent; this
might now be called lazy evaluation.
Beating is the transformation of code to
reduce the amount of data manipulation
involved during expression evaluation.

Drag-along and beating relate to JIT
compilation because APL is a very dy-
namic language; types and attributes of
data objects are not, in general, known
until run-time. To fully realize these op-
timizations’ potential, their application
must be delayed until run-time informa-
tion is available.

Abrams’ “APL Machine” employed two
separate JIT compilers. The first trans-

lated APL programs into postfix code for
a D-machine,1 which maintained a buffer
of deferred instructions. The D-machine
acted as an “algebraically simplifying com-
piler” [Abrams 1970, p. 84] which would
perform drag-along and beating at run-
time, invoking an E-machine to execute
the buffered instructions when necessary.

Abrams’ work was directed toward
an architecture for efficient support of
APL, hardware support for high-level lan-
guages being a popular pursuit of the time.
Abrams never built the machine, however;
an implementation was attempted a few
years later [Schroeder and Vaughn 1973].2
The techniques were later expanded upon
by others [Miller 1977], although the ba-
sic JIT nature never changed, and were
used for the software implementation of
Hewlett-Packard’s APL\3000 [Johnston
1977; van Dyke 1977].

2.4. Mixed Code, Throw-Away Code,
and BASIC

The tradeoff between execution time and
space often underlies the argument for JIT
compilation. This tradeoff is summarized
in Figure 1. The other consideration is
that most programs spend the majority of
time executing a minority of code, based on
data from empirical studies [Knuth 1971].
Two ways to reconcile these observations
have appeared: mixed code and throw-
away compiling.

Mixed code refers to the implementa-
tion of a program as a mixture of native
code and interpreted code, proposed in-
dependently by Dakin and Poole [1973]
and Dawson [1973]. The frequently ex-
ecuted parts of the program would be

1 Presumably D stood for Deferral or Drag-Along.
2 In the end, Litton Industries (Schroeder and
Vaughn’s employer) never built the machine
[Mauriello 2000].

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page16 of 64

100 Aycock

in native code, the infrequently executed
parts interpreted, hopefully yielding a
smaller memory footprint with little or no
impact on speed. A fine-grained mixture is
implied: implementing the program with
interpreted code and the libraries with na-
tive code would not constitute mixed code.

A further twist to the mixed code ap-
proach involved customizing the inter-
preter [Pittman 1987]. Instead of mixing
native code into the program, the na-
tive code manifests itself as special vir-
tual machine instructions; the program is
then compiled entirely into virtual ma-
chine code.

The basic idea of mixed code, switch-
ing between different types of executable
code, is still applicable to JIT systems, al-
though few researchers at the time ad-
vocated generating the machine code at
run-time. Keeping both a compiler and an
interpreter in memory at run-time may
have been considered too costly on the ma-
chines of the day, negating any program
size tradeoff.

The case against mixed code comes from
software engineering [Brown 1976]. Even
assuming that the majority of code will be
shared between the interpreter and com-
piler, there are still two disparate pieces
of code (the interpreter proper and the
compiler’s code generator) which must be
maintained and exhibit identical behavior.

(Proponents of partial evaluation, or
program specialization, will note that this
is a specious argument in some sense, be-
cause a compiler can be thought of as a
specialized interpreter [Jones et al. 1993].
However, the use of partial evaluation
techniques is not currently widespread.)

This brings us to the second man-
ner of reconciliation: throw-away compil-
ing [Brown 1976]. This was presented
purely as a space optimization: instead
of static compilation, parts of a program
could be compiled dynamically on an as-
needed basis. Upon exhausting memory,
some or all of the compiled code could be
thrown away; the code would be regener-
ated later if necessary.

BASIC was the testbed for throw-
away compilation. Brown [1976] essen-
tially characterized the technique as a

good way to address the time-space trade-
off; Hammond [1977] was somewhat more
adamant, claiming throw-away compila-
tion to be superior except when memory
is tight.

A good discussion of mixed code and
throw-away compiling may be found
in Brown [1990].

2.5. FORTRAN

Some of the first work on JIT systems
where programs automatically optimize
their “hot spots” at run-time was due to
Hansen [1974].3 He addressed three im-
portant questions:

(1) What code should be optimized?
Hansen chose a simple, low-cost
frequency model, maintaining a
frequency-of-execution counter for
each block of code (we use the generic
term block to describe a unit of
code; the exact nature of a block is
immaterial for our purposes).

(2) When should the code be optimized?
The frequency counters served a sec-
ond rôle: crossing a threshold value
made the associated block of code a
candidate for the next “level” of op-
timization, as described below. “Su-
pervisor” code was invoked between
blocks, which would assess the coun-
ters, perform optimization if necessary,
and transfer control to the next block
of code. The latter operation could be a
direct call, or interpreter invocation—
mixed code was supported by Hansen’s
design.

(3) How should the code be optimized?
A set of conventional machine-
independent and machine-dependent
optimizations were chosen and or-
dered, so a block might first be opti-
mized by constant folding, by common
subexpression elimination the second

3 Dawson [1973] mentioned a 1967 report by Barbieri
and Morrissey where a program begins execution in
interpreted form, and frequently executed parts “can
be converted to machine code.” However, it is not clear
if the conversion to machine code occurred at run-
time. Unfortunately, we have not been able to obtain
the cited work as of this writing.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page17 of 64

Brief History of Just-In-Time 101

time optimization occurs, by code
motion the third time, and so on.
Hansen [1974] observed that this
scheme limits the amount of time
taken at any given optimization point
(especially important if the frequency
model proves to be incorrect), as
well as allowing optimizations to be
incrementally added to the compiler.

Programs using the resulting Adap-
tive FORTRAN system reportedly were
not always faster than their statically
compiled-and-optimized counterparts, but
performed better overall.

Returning again to mixed code, Ng and
Cantoni [1976] implemented a variant of
FORTRAN using this technique. Their
system could compile functions at run-
time into “pseudo-instructions,” probably
a tokenized form of the source code rather
than a lower-level virtual machine code.
The pseudo-instructions would then be
interpreted. They claimed that run-time
compilation was useful for some applica-
tions and avoided a slow compile-link pro-
cess. They did not produce mixed code
at run-time; their use of the term re-
ferred to the ability to have statically
compiled FORTRAN programs call their
pseudo-instruction interpreter automati-
cally when needed via linker trickery.

2.6. Smalltalk

Smalltalk source code is compiled into vir-
tual machine code when new methods are
added to a class [Goldberg and Robson
1985]. The performance of naı̈ve Smalltalk
implementations left something to be de-
sired, however.

Rather than attack the performance
problem with hardware, Deutsch and
Schiffman [1984] made key optimizations
in software. The observation behind this
was that they could pick the most efficient
representation for information, so long as
conversion between representations hap-
pened automatically and transparently to
the user.

JIT conversion of virtual machine code
to native code was one of the optimiza-
tion techniques they used, a process they

likened to macro-expansion. Procedures
were compiled to native code lazily, when
execution entered the procedure; the na-
tive code was cached for later use. Their
system was linked to memory manage-
ment in that native code would never be
paged out, just thrown away and regener-
ated later if necessary.

In turn, Deutsch and Schiffman [1984]
credited the dynamic translation idea to
Rau [1978]. Rau was concerned with “uni-
versal host machines” which would ex-
ecute a variety of high-level languages
well (compared to, say, a specialized APL
machine). He proposed dynamic trans-
lation to microcode at the granularity
of single virtual machine instructions.
A hardware cache, the dynamic transla-
tion buffer, would store completed transla-
tions; a cache miss would signify a missing
translation, and fault to a dynamic trans-
lation routine.

2.7. Self

The Self programming language [Ungar
and Smith 1987; Smith and Ungar 1995],
in contrast to many of the other lan-
guages mentioned in this section, is pri-
marily a research vehicle. Self is in many
ways influenced by Smalltalk, in that
both are pure object-oriented languages—
everything is an object. But Self eschews
classes in favor of prototypes, and oth-
erwise attempts to unify a number of
concepts. Every action is dynamic and
changeable, and even basic operations,
like local variable access, require invoca-
tion of a method. To further complicate
matters, Self is a dynamically-typed lan-
guage, meaning that the types of identi-
fiers are not known until run-time.

Self ’s unusual design makes efficient
implementation difficult. This resulted in
the development of the most aggressive,
ambitious JIT compilation and optimiza-
tion up to that time. The Self group
noted three distinct generations of com-
piler [Hölzle 1994], an organization we fol-
low below; in all cases, the compiler was
invoked dynamically upon a method’s in-
vocation, as in Deutsch and Schiffman’s
[1984] Smalltalk system.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page18 of 64

102 Aycock

2.7.1. First Generation. Almost all the op-
timization techniques employed by Self
compilers dealt with type information, and
transforming a program in such a way
that some certainty could be had about the
types of identifiers. Only a few techniques
had a direct relationship with JIT compi-
lation, however.

Chief among these, in the first-
generation Self compiler, was customiza-
tion [Chambers et al. 1989; Chambers and
Ungar 1989; Chambers 1992]. Instead
of dynamically compiling a method into
native code that would work for any
invocation of the method, the compiler
produced a version of the method that
was customized to that particular con-
text. Much more type information was
available to the JIT compiler compared
to static compilation, and by exploiting
this fact the resulting code was much
more efficient. While method calls from
similar contexts could share customized
code, “overcustomization” could still
consume a lot of memory at run-time;
ways to combat this problem were later
studied [Dieckmann and Hölzle 1997].

2.7.2. Second Generation. The second-
generation Self compiler extended one
of the program transformation tech-
niques used by its predecessor, and
computed much better type information
for loops [Chambers and Ungar 1990;
Chambers 1992].

This Self compiler’s output was indeed
faster than that of the first generation,
but it came at a price. The compiler ran
15 to 35 times more slowly on bench-
marks [Chambers and Ungar 1990, 1991],
to the point where many users refused to
use the new compiler [Hölzle 1994]!

Modifications were made to the respon-
sible algorithms to speed up compila-
tion [Chambers and Ungar 1991]. One
such modification was called deferred com-
pilation of uncommon cases.4 The compiler

4 In Chambers’ thesis, this is referred to as “lazy
compilation of uncommon branches,” an idea he
attributes to a suggestion by John Maloney in
1989 [Chambers 1992, p. 123]. However, this is the
same technique used in Mitchell [1970], albeit for
different reasons.

is informed that certain events, such as
arithmetic overflow, are unlikely to occur.
That being the case, no code is generated
for these uncommon cases; a stub is left
in the code instead, which will invoke the
compiler again if necessary. The practi-
cal result of this is that the code for un-
common cases need not be analyzed upon
initial compilation, saving a substantial
amount of time.5

Ungar et al. [1992] gave a good presen-
tation of optimization techniques used in
Self and the resulting performance in the
first- and second-generation compilers.

2.7.3. Third Generation. The third-
generation Self compiler attacked the
issue of slow compilation at a much more
fundamental level. The Self compiler
was part of an interactive, graphical
programming environment; executing the
compiler on-the-fly resulted in a notice-
able pause in execution. Hölzle argued
that measuring pauses in execution for
JIT compilation by timing the amount
of time the compiler took to run was
deceptive, and not representative of the
user’s experience [Hölzle 1994; Hölzle
and Ungar 1994b]. Two invocations of the
compiler could be separated by a brief
spurt of program execution, but would
be perceived as one long pause by the
user. Hölzle compensated by considering
temporally related groups of pauses, or
“pause clusters,” rather than individual
compilation pauses.

As for the compiler itself, compi-
lation time was reduced—or at least
spread out—by using adaptive optimiza-
tion, similar to Hansen’s [1974] FOR-
TRAN work. Initial method compilation
was performed by a fast, nonoptimizing
compiler; frequency-of-invocation coun-
ters were kept for each method to de-
termine when recompilation should oc-
cur [Hölzle 1994; Hölzle and Ungar 1994a,
1994b]. Hölzle makes an interesting com-
ment on this mechanism:

. . . in the course of our experiments we discov-
ered that the trigger mechanism (“when”) is

5 This technique can be applied to dynamic compila-
tion of exception handling code [Lee et al. 2000].

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page19 of 64

Brief History of Just-In-Time 103

much less important for good recompilation
results than the selection mechanism (“what”).
[Hölzle 1994, p. 38]6

This may come from the slightly coun-
terintuitive notion that the best candi-
date for recompilation is not necessarily
the method whose counter triggered the
recompilation. Object-oriented program-
ming style tends to encourage short meth-
ods; a better choice may be to (re)optimize
the method’s caller and incorporate the
frequently invoked method inline [Hölzle
and Ungar 1994b].

Adaptive optimization adds the compli-
cation that a modified method may already
be executing, and have information (such
as an activation record on the stack) that
depends on the previous version of the
modified method [Hölzle 1994]; this must
be taken into consideration.7

The Self compiler’s JIT optimization
was assisted by the introduction of “type
feedback” [Hölzle 1994; Hölzle and Ungar
1994a]. As a program executed, type infor-
mation was gathered by the run-time sys-
tem, a straightforward process. This type
information would then be available if and
when recompilation occurred, permitting
more aggressive optimization. Informa-
tion gleaned using type feedback was later
shown to be comparable with, and perhaps
complementary to, information from static
type inference [Agesen and Hölzle 1995;
Agesen 1996].

2.8. Slim Binaries and Oberon

One problem with software distribution
and maintenance is the heterogeneous
computing environment in which soft-
ware runs: different computer architec-
tures require different binary executables.
Even within a single line of backward-
compatible processors, many variations in
capability can exist; a program statically

6 The same comment, with slightly different wording,
also appears in Hölzle and Ungar [1994a, p. 328].
7 Hansen’s work in 1974 could ignore this possibility;
the FORTRAN of the time did not allow recursion,
and so activation records and a stack were unneces-
sary [Sebesta 1999].

compiled for the least-common denomina-
tor of processor may not take full advan-
tage of the processor on which it eventu-
ally executes.

In his doctoral work, Franz ad-
dressed these problems using “slim
binaries” [Franz 1994; Franz and Kistler
1997]. A slim binary contains a high-level,
machine-independent representation8

of a program module. When a module
is loaded, executable code is generated
for it on-the-fly, which can presumably
tailor itself to the run-time environment.
Franz, and later Kistler, claimed that
generating code for an entire module at
once was often superior to the method-
at-a-time strategy used by Smalltalk
and Self, in terms of the resulting code
performance [Franz 1994; Kistler 1999].

Fast code generation was critical to the
slim binary approach. Data structures
were delicately arranged to facilitate this;
generated code that could be reused was
noted and copied if needed later, rather
than being regenerated [Franz 1994].

Franz implemented slim binaries for
the Oberon system, which allows dynamic
loading of modules [Wirth and Gutknecht
1989]. Loading and generating code for a
slim binary was not faster than loading a
traditional binary [Franz 1994; Franz and
Kistler 1997], but Franz argued that this
would eventually be the case as the speed
discrepancy between processors and in-
put/output (I/O) devices increased [Franz
1994].

Using slim binaries as a starting point,
Kistler’s [1999] work investigated “contin-
uous” run-time optimization, where parts
of an executing program can be optimized
ad infinitum. He contrasted this to the
adaptive optimization used in Self, where
optimization of methods would eventually
cease.

Of course, reoptimization is only useful
if a new, better, solution can be obtained;
this implies that continuous optimization
is best suited to optimizations whose in-
put varies over time with the program’s

8 This representation is an abstract syntax tree, to
be precise.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page20 of 64

104 Aycock

execution.9 Accordingly, Kistler looked at
cache optimizations—rearranging fields
in a structure dynamically to optimize
a program’s data-access patterns [Kistler
1999; Kistler and Franz 1999]—and a dy-
namic version of trace scheduling, which
optimizes based on information about
a program’s control flow during execu-
tion [Kistler 1999].

The continuous optimizer itself executes
in the background, as a separate low-
priority thread which executes only dur-
ing a program’s idle time [Kistler 1997,
1999]. Kistler used a more sophisticated
metric than straightforward counters to
determine when to optimize, and observed
that deciding what to optimize is highly
optimization-specific [Kistler 1999].

An idea similar to continuous optimiza-
tion has been implemented for Scheme.
Burger [1997] dynamically reordered code
blocks using profile information, to im-
prove code locality and hardware branch
prediction. His scheme relied on the (copy-
ing) garbage collector to locate pointers
to old versions of a function, and update
them to point to the newer version. This
dynamic recompilation process could be
repeated any number of times [Burger
1997, page 70].

2.9. Templates, ML, and C

ML and C make strange bedfellows, but
the same approach has been taken to dy-
namic compilation in both. This approach
is called staged compilation, where compi-
lation of a single program is divided into
two stages: static and dynamic compila-
tion. Prior to run-time, a static compiler
compiles “templates,” essentially building
blocks which are pieced together at run-
time by the dynamic compiler, which may
also place run-time values into holes left in
the templates. Typically these templates
are specified by user annotations, al-
though some work has been done on deriv-
ing them automatically [Mock et al. 1999].

9 Although, making the general case for run-time op-
timization, he discussed intermodule optimizations
where this is not the case [Kistler 1997].

As just described, template-based sys-
tems arguably do not fit our description of
JIT compilers, since there would appear to
be no nontrivial translation aspect. How-
ever, templates may be encoded in a form
which requires run-time translation be-
fore execution, or the dynamic compiler
may perform run-time optimizations after
connecting the templates.

Templates have been applied to (sub-
sets of) ML [Leone and Lee 1994; Lee
and Leone 1996; Wickline et al. 1998].
They have also been used for run-time spe-
cialization of C [Consel and Noël 1996;
Marlet et al. 1999], as well as dynamic
extensions of C [Auslander et al. 1996;
Engler et al. 1996; Poletto et al. 1997].
One system, Dynamo,10 proposed to per-
form staged compilation and dynamic op-
timization for Scheme and Java, as well as
for ML [Leone and Dybvig 1997].

Templates aside, ML may be dynami-
cally compiled anyway. In Cardelli’s de-
scription of his ML compiler, he noted:

[Compilation] is repeated for every definition or
expression typed by the user. . . or fetched from
an external file. Because of the interactive use
of the compiler, the compilation of small phrases
must be virtually instantaneous. [Cardelli 1984,
p. 209]

2.10. Erlang

Erlang is a functional language, designed
for use in large, soft real-time systems
such as telecommunications equipment
[Armstrong 1997]. Johansson et al. [2000]
described the implementation of a JIT
compiler for Erlang, HiPE, designed to ad-
dress performance problems.

As a recently designed system without
historical baggage, HiPE stands out in
that the user must explicitly invoke the
JIT compiler. The rationale for this is that
it gives the user a fine degree of control
over the performance/code space tradeoff
that mixed code offers [Johansson et al.
2000].

HiPE exercises considerable care when
performing “mode-switches” back and

10 A name collision: Leone and Dybvig’s “Dynamo” is
different from the “Dynamo” of Bala et al. [1999].

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page21 of 64

Brief History of Just-In-Time 105

forth between native and interpreted code.
Mode-switches may be needed at the obvi-
ous locations—calls and returns—as well
as for thrown exceptions. Their calls use
the mode of the caller rather than the
mode of the called code; this is in con-
trast to techniques used for mixed code
in Lisp (Gabriel and Masinter [1985] dis-
cussed mixed code calls in Lisp and their
performance implications).

2.11. Specialization and O’Caml

O’Caml is another functional language,
and can be considered a dialect of ML
[Rémy et al. 1999]. The O’Caml inter-
preter has been the focus of run-time spe-
cialization work.

Piumarta and Riccardi [1998] special-
ized the interpreter’s instructions to the
program being run, in a limited way.11

They first dynamically translated inter-
preted bytecodes into direct threaded
code [Bell 1973], then dynamically com-
bined blocks of instructions together into
new “macro opcodes,” modifying the code
to use the new instructions. This reduced
the overhead of instruction dispatch, and
yielded opportunities for optimization in
macro opcodes which would not have been
possible if the instructions had been sepa-
rate (although they did not perform such
optimizations). As presented, their tech-
nique did not take dynamic execution
paths into account, and they noted that it
is best suited to low-level instruction sets,
where dispatch time is a relatively large
factor in performance.

A more general approach to run-time
specialization was taken by Thibault et al.
[2000]. They applied their program spe-
cializer, Tempo [Consel et al. 1998], to the
Java virtual machine and the O’Caml in-
terpreter at run-time. They noted:

While the speedup obtained by specialization
is significant, it does not compete with results
obtained with hand-written off-line or run-time
compilers. [Thibault et al. 2000, p. 170]

11 Thibault et al. [2000] provided an alternative view
on Piumarta and Riccardi’s work with respect to
specialization.

But later in the paper they stated that

. . .program specialization is entering relative
maturity. [Thibault et al. 2000, p. 175]

This may be taken to imply that, at least
for the time being, program specialization
may not be as fruitful as other approaches
to dynamic compilation and optimization.

2.12. Prolog

Prolog systems dynamically compile, too,
although the execution model of Pro-
log necessitates use of specialized tech-
niques. Van Roy [1994] gave an outstand-
ing, detailed survey of the area. One of
SICStus Prolog’s native code compilers,
which could be invoked and have its out-
put loaded dynamically, was described in
Haygood [1994].

2.13. Simulation, Binary Translation,
and Machine Code

Simulation is the process of running na-
tive executable machine code for one ar-
chitecture on another architecture.12 How
does this relate to JIT compilation? One
of the techniques for simulation is bi-
nary translation; in particular, we focus on
dynamic binary translation that involves
translating from one machine code to an-
other at run-time. Typically, binary trans-
lators are highly specialized with respect
to source and target; research on retar-
getable and “resourceable” binary trans-
lators is still in its infancy [Ung and
Cifuentes 2000]. Altman et al. [2000b]
have a good discussion of the challenges
involved in binary translation, and Cmelik
and Keppel [1994] compared pre-1995
simulation systems in detail. Rather than
duplicating their work, we will take a
higher-level view.

May [1987] proposed that simulators
could be categorized by their implementa-
tion technique into three generations. To

12 We use the term simulate in preference to emulate
as the latter has the connotation that hardware is
heavily involved in the process. However, some liter-
ature uses the words interchangeably.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page22 of 64

106 Aycock

this, we add a fourth generation to char-
acterize more recent work.

(1) First-generation simulators were
interpreters, which would simply
interpret each source instruction as
needed. As might be expected, these
tended to exhibit poor performance
due to interpretation overhead.

(2) Second-generation simulators dynam-
ically translated source instructions
into target instruction one at a time,
caching the translations for later use.

(3) Third-generation simulators impro-
ved upon the performance of second-
generation simulators by dynamically
translating entire blocks of source in-
structions at a time. This introduces
new questions as to what should be
translated. Most such systems trans-
lated either basic blocks of code or
extended basic blocks [Cmelik and
Keppel 1994], reflecting the static
control flow of the source program.
Other static translation units are pos-
sible: one anomalous system, DAISY,
performed page-at-a-time translations
from PowerPC to VLIW instructions
[Ebcioğlu and Altman 1996, 1997].

(4) What we call fourth-generation
simulators expand upon the third-
generation by dynamically translating
paths, or traces. A path reflects the
control flow exhibited by the source
program at run-time, a dynamic in-
stead of a static unit of translation.
The most recent work on binary trans-
lation is concentrated on this type of
system.

Fourth-generation simulators are pre-
dominant in recent literature [Bala et al.
1999; Chen et al. 2000; Deaver et al. 1999;
Gschwind et al. 2000; Klaiber 2000; Zheng
and Thompson 2000]. The structure of
these is fairly similar:

(1) Profiled execution. The simulator’s
effort should be concentrated on “hot”
areas of code that are frequently exe-
cuted. For example, initialization code
that is executed only once should not
be translated or optimized. To deter-

mine which execution paths are hot,
the source program is executed in some
manner and profile information is
gathered. Time invested in doing this
is assumed to be recouped eventually.

When source and target architec-
tures are dissimilar, or the source ar-
chitecture is uncomplicated (such as
a reduced instruction set computer
(RISC) processor) then interpretation
of the source program is typically
employed to execute the source pro-
gram [Bala et al. 1999; Gschwind et al.
2000; Transmeta Corporation 2001;
Zheng and Thompson 2000]. The al-
ternative approach, direct execution, is
best summed up by Rosenblum et al.
[1995, p. 36]:

By far the fastest simulator of the CPU,
MMU, and memory system of an SGI mul-
tiprocessor is an SGI multiprocessor.

In other words, when the source and
target architectures are the same, as
in the case where the goal is dynamic
optimization of a source program, the
source program can be executed di-
rectly by the central processing unit
(CPU). The simulator regains control
periodically as a result of appropri-
ately modifying the source program
[Chen et al. 2000] or by less di-
rect means such as interrupts [Gorton
2001].

(2) Hot path detection. In lieu of hard-
ware support, hot paths may be de-
tected by keeping counters to record
frequency of execution [Zheng and
Thompson 2000], or by watching for
code that is structurally likely to be
hot, like the target of a backward
branch [Bala et al. 1999]. With hard-
ware support, the program’s program
counter can be sampled at intervals to
detect hot spots [Deaver et al. 1999].

Some other considerations are that
paths may be strategically excluded if
they are too expensive or difficult to
translate [Zheng and Thompson 2000],
and choosing good stopping points for
paths can be as important as choos-
ing good starting points in terms

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page23 of 64

Brief History of Just-In-Time 107

of keeping a manageable number of
traces [Gschwind et al. 2000].

(3) Code generation and optimization.
Once a hot path has been noted, the
simulator will translate it into code
for the target architecture, or perhaps
optimize the code. The correctness of
the translation is always at issue, and
some empirical verification techniques
are discussed in [Zheng and Thompson
2000].

(4) “Bail-out” mechanism. In the case of
dynamic optimization systems (where
the source and target architectures are
the same), there is the potential for
a negative impact on the source pro-
gram’s performance. A bail-out mech-
anism [Bala et al. 1999] heuristically
tries to detect such a problem and re-
vert back to the source program’s di-
rect execution; this can be spotted, for
example, by monitoring the stability of
the working set of paths. Such a mech-
anism can also be used to avoid han-
dling complicated cases.

Another recurring theme in recent
binary translation work is the issue of
hardware support for binary translation,
especially for translating code for legacy
architectures into VLIW code. This has
attracted interest because VLIW archi-
tectures promise legacy architecture
implementations which have higher per-
formance, greater instruction-level paral-
lelism [Ebcioğlu and Altman 1996, 1997],
higher clock rates [Altman et al. 2000a;
Gschwind et al. 2000], and lower power
requirements [Klaiber 2000]. Binary
translation work in these processors is
still done by software at run-time, and is
thus still dynamic binary translation, al-
though occasionally packaged under more
fanciful names to enrapture venture capi-
talists [Geppert and Perry 2000]. The key
idea in these systems is that, for efficiency,
the target VLIW should provide a super-
set of the source architecture [Ebcioğlu
and Altman 1997]; these extra resources,
unseen by the source program, can be used
by the binary translator for aggressive
optimizations or to simulate troublesome
aspects of the source architecture.

2.14. Java

Java is implemented by static compila-
tion to bytecode instructions for the Java
virtual machine, or JVM. Early JVMs
were only interpreters, resulting in less-
than-stellar performance:

Interpreting bytecodes is slow. [Cramer et al.
1997, p. 37]

Java isn’t just slow, it’s really slow, surprisingly
slow. [Tyma 1998, p. 41]

Regardless of how vitriolic the expres-
sion, the message was that Java programs
had to run faster, and the primary means
looked to for accomplishing this was JIT
compilation of Java bytecodes. Indeed,
Java brought the term just-in-time into
common use in computing literature.13

Unquestionably, the pressure for fast Java
implementations spurred a renaissance in
JIT research; at no other time in history
has such concentrated time and money
been invested in it.

An early view of Java JIT compilation
was given by Cramer et al. [1997], who
were engineers at Sun Microsystems, the
progenitor of Java. They made the ob-
servation that there is an upper bound
on the speedup achievable by JIT compi-
lation, noting that interpretation proper
only accounted for 68% of execution time
in a profile they ran. They also advocated
the direct use of JVM bytecodes, a stack-
based instruction set, as an intermedi-
ate representation for JIT compilation and
optimization. In retrospect, this is a mi-
nority viewpoint; most later work, includ-
ing Sun’s own [Sun Microsystems 2001],
invariably began by converting JVM
code into a register-based intermediate
representation.

The interesting trend in Java JIT
work [Adl-Tabatabai et al. 1998; Bik et al.
1999; Burke et al. 1999; Cierniak and
Li 1997; Ishizaki et al. 1999; Krall and
Grafl 1997; Krall 1998; Yang et al. 1999]
is the implicit assumption that mere

13 Gosling [2001] pointed out that the term just-
in-time was borrowed from manufacturing terminol-
ogy, and traced his own use of the term back to about
1993.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page24 of 64

108 Aycock

translation from bytecode to native code is
not enough: code optimization is necessary
too. At the same time, this work recognizes
that traditional optimization techniques
are expensive, and looks for modifica-
tions to optimization algorithms that
strike a balance between speed of algo-
rithm execution and speed of the resulting
code.

There have also been approaches to
Java JIT compilation besides the usual
interpret-first-optimize-later. A compile-
only strategy, with no interpreter whatso-
ever, was adopted by Burke et al. [1999],
who also implemented their system in
Java; improvements to their JIT directly
benefited their system. Agesen [1997]
translated JVM bytecodes into Self code,
to leverage optimizations already exist-
ing in the Self compiler. Annotations were
tried by Azevedo et al. [1999] to shift the
effort of code optimization prior to run-
time: information needed for efficient JIT
optimization was precomputed and tagged
on to bytecode as annotations, which were
then used by the JIT system to assist its
work. Finally, Plezbert and Cytron [1997]
proposed and evaluated the idea of “con-
tinuous compilation” for Java in which
an interpreter and compiler would exe-
cute concurrently, preferably on separate
processors.14

3. CLASSIFICATION OF JIT SYSTEMS

In the course of surveying JIT work, some
common attributes emerged. We propose
that JIT systems can be classified accord-
ing to three properties:

(1) Invocation. A JIT compiler is explic-
itly invoked if the user must take some
action to cause compilation at run-
time. An implicitly invoked JIT com-
piler is transparent to the user.

(2) Executability. JIT systems typically
involve two languages: a source lan-
guage to translate from, and a tar-
get language to translate to (although

14 As opposed to the ongoing optimization of Kistler’s
[2001] “continuous optimization,” only compilation
occurred concurrently using “continuous compila-
tion,” and only happened once.

these languages can be the same, if
the JIT system is only performing op-
timization on-the-fly). We call a JIT
system monoexecutable if it can only
execute one of these languages, and
polyexecutable if can execute more
than one. Polyexecutable JIT systems
have the luxury of deciding when com-
piler invocation is warranted, since ei-
ther program representation can be
used.

(3) Concurrency. This property charac-
terizes how the JIT compiler executes,
relative to the program itself. If pro-
gram execution pauses under its own
volition to permit compilation, it is not
concurrent; the JIT compiler in this
case may be invoked via subroutine
call, message transmission, or transfer
of control to a coroutine. In contrast, a
concurrent JIT compiler can operate as
the program executes concurrently: in
a separate thread or process, even on a
different processor.

JIT systems that function in hard real
time may constitute a fourth classifying
property, but there seems to be little re-
search in the area at present; it is un-
clear if hard real-time constraints pose
any unique problems to JIT systems.

Some trends are apparent. For instance,
implicitly invoked JIT compilers are defi-
nitely predominant in recent work. Exe-
cutability varies from system to system,
but this is more an issue of design than
an issue of JIT technology. Work on con-
current JIT compilers is currently only be-
ginning, and will likely increase in impor-
tance as processor technology evolves.

4. TOOLS FOR JIT COMPILATION

General, portable tools for JIT compilation
that help with the dynamic generation of
binary code did not appear until relatively
recently. To varying degrees, these toolkits
address three issues:

(1) Binary code generation. As argued
in Ramsey and Fernández [1995],
emitting binary code such as machine
language is a situation rife with oppor-
tunities for error. There are associated

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page25 of 64

Brief History of Just-In-Time 109

Table 1. Comparison of JIT Toolkits

Binary code Cache Abstract
Source generation coherence Execution interface Input

Engler [1996] • • • • ad hoc
Engler and Proebsting [1994] • • • • tree
Fraser and Proebsting [1999] • • • • postfix
Keppel [1991] • • • n/a
Ramsey and Fernández [1995] • ad hoc

Note: n/a=not applicable.

bookkeeping tasks too: information
may not yet be available upon initial
code generation, like the location of for-
ward branch targets. Once discovered,
the information must be backpatched
into the appropriate locations.

(2) Cache coherence. CPU speed ad-
vances have far outstripped mem-
ory speed advances in recent years
[Hennessy and Patterson 1996]. To
compensate, modern CPUs incorpo-
rate a small, fast cache memory, the
contents of which may get temporar-
ily out of sync with main memory.
When dynamically generating code,
care must be taken to ensure that the
cache contents reflect code written to
main memory before execution is at-
tempted. The situation is even more
complicated when several CPUs share
a single memory. Keppel [1991] gave a
detailed discussion.

(3) Execution. The hardware or operat-
ing system may impose restrictions
which limit where executable code
may reside. For example, memory ear-
marked for data may not allow ex-
ecution (i.e., instruction fetches) by
default, meaning that code could be
generated into the data memory, but
not executed without platform-specific
wrangling. Again, refer to Keppel
[1991].

Only the first issue is relevant for JIT
compilation to interpreted virtual ma-
chine code—interpreters don’t directly ex-
ecute the code they interpret—but there is
no reason why JIT compilation tools can-
not be useful for generation of nonnative
code as well.

Table I gives a comparison of the
toolkits. In addition to indicating how
well the toolkits support the three areas
above, we have added two extra cate-
gories. First, an abstract interface is one
that is architecture-independent. Use of
a toolkit’s abstract interface implies that
very little, if any, of the user’s code
needs modification in order to use a
new platform. The drawbacks are that
architecture-dependent operations like
register allocation may be difficult, and
the mapping from abstract to actual ma-
chine may be suboptimal, such as a map-
ping from RISC abstraction to complex in-
struction set computer (CISC) machinery.

Second, input refers to the structure, if
any, of the input expected by the toolkit.
With respect to JIT compilation, more
complicated input structures take more
time and space for the user to produce and
the toolkit to consume [Engler 1996].

Using a tool may solve some prob-
lems but introduce others. Tools for bi-
nary code generation help avoid many
errors compared to manually emitting bi-
nary code. These tools, however, require
detailed knowledge of binary instruction
formats whose specification may itself be
prone to error. Engler and Hsieh [2000]
presented a “metatool” that can automat-
ically derive these instruction encodings
by repeatedly querying the existing sys-
tem assembler with varying inputs.

5. CONCLUSION

Dynamic, or just-in-time, compilation is
an old implementation technique with
a fragmented history. By collecting this
historical information together, we hope to
shorten the voyage of rediscovery.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page26 of 64

110 Aycock

ACKNOWLEDGMENTS

Thanks to Nigel Horspool, Shannon Jaeger, and Mike
Zastre, who proofread and commented on drafts of
this paper. Comments from the anonymous refer-
ees helped improve the presentation as well. Also,
thanks to Rick Gorton, James Gosling, Thomas
Kistler, Ralph Mauriello, and Jim Mitchell for
supplying historical information and clarifications.
Evelyn Duesterwald’s PLDI 2000 tutorial notes were
helpful in preparing Section 2.9.

REFERENCES

ABRAMS, P. S. 1970. An APL machine. Ph.D. disser-
tation. Stanford University, Stanford, CA. Also,
Stanford Linear Accelerator Center (SLAC)
Rep. 114.

ADL-TABATABAI, A.-R., CIERNIAK, M., LUEH, G.-Y.,
PARIKH, V. M., AND STICHNOTH, J. M. 1998. Fast,
effective code generation in a just-in-time Java
compiler. In PLDI ’98. 280–290.

AGESEN, O. 1996. Concrete type inference: Deliv-
ering object-oriented applications. Ph.D. disser-
tation. Stanford University, Stanford, CA. Also
Tech. Rep. SMLI TR-96-52, Sun Microsystems,
Santa Clara, CA (Jan. 1996).

AGESEN, O. 1997. Design and implementation of
Pep, a Java just-in-time translator. Theor. Prac.
Obj. Syst. 3, 2, 127–155.

AGESEN, O. AND HÖLZLE, U. 1995. Type feedback
vs. concrete type inference: A comparison of op-
timization techniques for object-oriented lan-
guages. In Proceedings of OOPSLA ’95. 91–107.

ALTMAN, E., GSCHWIND, M., SATHAYE, S., KOSONOCKY, S.,
BRIGHT, A., FRITTS, J., LEDAK, P., APPENZELLER, D.,
AGRICOLA, C., AND FILAN, Z. 2000a. BOA: The
architecture of a binary translation processor.
Tech. Rep. RC 21665, IBM Research Division,
Yorktown Heights, NY.

ALTMAN, E. R., KAELI, D., AND SHEFFER, Y. 2000b.
Welcome to the opportunities of binary transla-
tion. IEEE Comput. 33, 3 (March), 40–45.

ARMSTRONG, J. 1997. The development of Erlang.
In Proceedings of ICFP ’97 (1997). 196–203.

AUSLANDER, J., PHILIPOSE, M., CHAMBERS, C., EGGERS,
S. J., AND BERSHAD, B. N. 1996. Fast, effective
dynamic compilation. In Proceedings of PLDI
’96. 149–159.

AZEVEDO, A., NICOLAU, A., AND HUMMEL, J. 1999.
Java annotation-aware just-in-time (AJIT) com-
pilation system. In Proceedings of JAVA ’99.
142–151.

BALA, V., DUESTERWALD, E., AND BANERJIA, S. 1999.
Transparent dynamic optimization. Tech. Rep.
HPL-1999-77, Hewlett-Packard, Polo Alto, CA.

BARTLETT, J. 1992. Familiar Quotations (16th ed.).
J. Kaplan, Ed. Little, Brown and Company,
Boston, MA.

BELL, J. R. 1973. Threaded code. Commun.
ACM 16, 6 (June), 370–372.

BENTLEY, J. 1988. Little languages. In More Pro-
gramming Pearls. Addison-Wesley, Reading,
MA, 83–100.

BIK, A. J. C., GIRKAR, M., AND HAGHIGHAT, M. R.
1999. Experiences with Java JIT optimization.
In Innovative Architecture for Future Genera-
tion High-Performance Processors and Systems.
IEEE Computer Society Press, Los Alamitos,
CA, 87–94.

BROWN, P. J. 1976. Throw-away compiling.
Softw.—Pract. Exp. 6, 423–434.

BROWN, P. J. 1990. Writing Interactive Compilers
and Interpreters. Wiley, New York, NY.

BURGER, R. G. 1997. Efficient compilation and
profile-driven dynamic recompilation in
scheme. Ph.D. dissertation, Indiana University,
Bloomington, IN.

BURKE, M. G., CHOI, J.-D., FINK, S., GROVE, D., HIND, M.,
SARKAR, V., SERRANO, M. J., SREEDHAR, V. C., AND

SRINIVASAN, H. 1999. The Jalapeño dynamic
optimizing compiler for Java. In Proceedings of
JAVA ’99. 129–141.

CARDELLI, L. 1984. Compiling a functional lan-
guage. In 1984 Symposium on Lisp and Func-
tional Programming. 208–217.

CHAMBERS, C. 1992. The design and implemen-
tation of the self compiler, an optimizing
compiler for object-oriented programming lan-
guages. Ph.D. dissertation. Stanford University,
Stanford, CA.

CHAMBERS, C. AND UNGAR, D. 1989. Customiza-
tion: optimizing compiler technology for Self,
a dynamically-typed object-oriented program-
ming language. In Proceedings of PLDI ’89. 146–
160.

CHAMBERS, C. AND UNGAR, D. 1990. Iterative type
analysis and extended message splitting: Op-
timizing dynamically-typed object-oriented pro-
grams. In Proceedings of PLDI ’90. 150–164.

CHAMBERS, C. AND UNGAR, D. 1991. Making pure
object-oriented languages practical. In Proceed-
ings of OOPSLA ’91. 1–15.

CHAMBERS, C., UNGAR, D., AND LEE, E. 1989. An ef-
ficient implementation of Self, a dynamically-
typed object-oriented programming language
based on prototypes. In Proceedings of OOPSLA
’89. 49–70.

CHEN, W.-K., LERNER, S., CHAIKEN, R., AND GILLIES,
D. M. 2000. Mojo: a dynamic optimization
system. In Proceedings of the Third ACM Work-
shop on Feedback-Directed and Dynamic Opti-
mization (FDDO-3, Dec. 2000).

CIERNIAK, M. AND LI, W. 1997. Briki: an optimizing
Java compiler. In Proceedings of IEEE COMP-
CON ’97. 179–184.

CMELIK, B. AND KEPPEL, D. 1994. Shade: A fast
instruction-set simulator for execution profiling.
In Proceedings of the 1994 Conference on Mea-
surement and Modeling of Computer Systems.
128–137.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page27 of 64

Brief History of Just-In-Time 111

CONSEL, C., HORNOF, L., MARLET, R., MULLER, G.,
THIBAULT, S., VOLANSCHI, E.-N., LAWALL, J.,
AND NOYÉ, J. 1998. Tempo: Specializing sys-
tems applications and beyond. ACM Comput.
Surv. 30, 3 (Sept.), 5pp.

CONSEL, C. AND NOËL, F. 1996. A general approach
for run-time specialization and its application to
C. In Proceedings of POPL ’96. 145–156.

CRAMER, T., FRIEDMAN, R., MILLER, T., SEBERGER, D.,
WILSON, R., AND WOLCZKO, M. 1997. Compiling
Java just in time. IEEE Micro 17, 3 (May/June),
36–43.

DAKIN, R. J. AND POOLE, P. C. 1973. A mixed code
approach. The Comput. J. 16, 3, 219–222.

DAWSON, J. L. 1973. Combining interpretive code
with machine code. The Comput. J. 16, 3, 216–
219.

DEAVER, D., GORTON, R., AND RUBIN, N. 1999.
Wiggins/Redstone: An on-line program special-
izer. In Proceedings of the IEEE Hot Chips XI
Conference (Aug. 1999). IEEE Computer Society
Press, Los, Alamitos, CA.

DEUTSCH, L. P. AND SCHIFFMAN, A. M. 1984. Efficient
implementation of the Smalltalk-80 system. In
Proceedings of POPL ’84. 297–302.

DIECKMANN, S. AND HÖLZLE, U. 1997. The space
overhead of customization. Tech. Rep. TRCS
97-21. University of California, Santa Barbara,
Santa Barbara, CA.

EBCIOĞLU, K. AND ALTMAN, E. R. 1996. DAISY: Dy-
namic compilation for 100% architectural com-
patibility. Tech. Rep. RC 20538. IBM Research
Division, Yorktown Heights, NY.

EBCIOĞLU, K. AND ALTMAN, E. R. 1997. Daisy: Dy-
namic compilation for 100% architectural com-
patibility. In Proceedings of ISCA ’97. 26–37.

ENGLER, D. R. 1996. VCODE: a retargetable, ex-
tensible, very fast dynamic code generation sys-
tem. In Proceedings of PLDI ’96. 160–170.

ENGLER, D. R. AND HSIEH, W. C. 2000. DERIVE:
A tool that automatically reverse-engineers in-
struction encodings. In Proceedings of the ACM
SIGPLAN Workshop on Dynamic and Adaptive
Compilation and Optimization (Dynamo ’00).
12–22.

ENGLER, D. R., HSIEH, W. C., AND KAASHOEK, M. F.
1996. C: A language for high-level, efficient,
and machine-independent dynamic code gen-
eration. In Proceedings of POPL ’96. 131–
144.

ENGLER, D. R. AND PROEBSTING, T. A. 1994. DCG: An
efficient, retargetable dynamic code generation
system. In Proceedings of ASPLOS VI. 263–272.

FRANZ, M. 1994. Code-generation on-the-fly: A key
to portable software. Ph.D. dissertation. ETH
Zurich, Zurich, Switzerland.

FRANZ, M. AND KISTLER, T. 1997. Slim binaries.
Commun. ACM 40, 12 (Dec.), 87–94.

FRASER, C. W. AND PROEBSTING, T. A. 1999. Finite-
state code generation. In Proceedings of PLDI
’99. 270–280.

GABRIEL, R. P. AND MASINTER, L. M. 1985. Perfor-
mance and Evaluation of Lisp Systems. MIT
Press, Cambridge, MA.

GEPPERT, L. AND PERRY, T. S. 2000. Transmeta’s
magic show. IEEE Spectr. 37, 5 (May), 26–33.

GOLDBERG, A. AND ROBSON, D. 1985. Smalltalk-80:
The Language and its Implementation. Addison-
Wesley, Reading, MA.

GORTON, R. 2001. Private communication.
GOSLING, J. 2001. Private communication.
GSCHWIND, M., ALTMAN, E. R., SATHAYE, S., LEDAK,

P., AND APPENZELLER, D. 2000. Dynamic and
transparent binary translation. IEEE Com-
put. 33, 3, 54–59.

HAMMOND, J. 1977. BASIC—an evaluation of pro-
cessing methods and a study of some programs.
Softw.—Pract. Exp. 7, 697–711.

HANSEN, G. J. 1974. Adaptive systems for the
dynamic run-time optimization of programs.
Ph.D. dissertation. Carnegie-Mellon University,
Pittsburgh, PA.

HAYGOOD, R. C. 1994. Native code compilation in
SICStus Prolog. In Proceedings of the Eleventh
International Conference on Logic Program-
ming. 190–204.

HENNESSY, J. L. AND PATTERSON, D. A. 1996. Com-
puter Architecture: A Quantitative Approach,
2nd ed. Morgan Kaufmann, San Francisco, CA.

HÖLZLE, U. 1994. Adaptive optimization for Self:
Reconciling high performance with exploratory
programming. Ph.D. dissertation. Carnegie-
Mellon University, Pittsburgh, PA.

HÖLZLE, U. AND UNGAR, D. 1994a. Optimizing
dynamically-dispatched calls with run-time type
feedback. In Proceedings of PLDI ’94. 326–336.

HÖLZLE, U. AND UNGAR, D. 1994b. A third-
generation Self implementation: Reconciling
responsiveness with performance. In Proceed-
ings of OOPSLA ’94. 229–243.

ISHIZAKI, K., KAWAHITO, M., YASUE, T., TAKEUCHI,
M., OGASAWARA, T., SUGANUMA, T., ONODERA, T.,
KOMATSU, H., AND NAKATANI, T. 1999. Design,
implementation, and evaluation of optimiza-
tions in a just-in-time compiler. In Proceedings
of JAVA ’99. 119–128.

JOHANSSON, E., PETTERSSON, M., AND SAGONAS, K.
2000. A high performance Erlang system. In
Proceedings of PPDP ’00. 32–43.

JOHNSTON, R. L. 1977. The dynamic incremental
compiler of APL\3000. In APL ’79 Conference
Proceedings. Published in APL Quote Quad 9,
4 (June), Pt. 1, 82–87.

JONES, N. D., GOMARD, C. K., AND SESTOFT, P. 1993.
Partial Evaluation and Automatic Program Gen-
eration. Prentice Hall, Englewood Cliffs, NJ.

KEPPEL, D. 1991. A portable interface for on-
the-fly instruction space modification. In Pro-
ceedings of ASPLOS IV. 86–95.

KEPPEL, D., EGGERS, S. J., AND HENRY, R. R. 1991.
A case for runtime code generation. Tech. Rep.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page28 of 64

112 Aycock

91-11-04. Department of Computer Science and
Engineering, University of Washington, Seattle,
WA.

KISTLER, T. 1997. Dynamic runtime optimization.
In Proceedings of the Joint Modular Languages
Conference (JMLC ’97). 53–66.

KISTLER, T. 1999. Continuous program optimi-
zation. Ph.D. dissertation. University of
California, Irvine, Irvine, CA.

KISTLER, T. 2001. Private communication.
KISTLER, T. AND FRANZ, M. 1999. The case for

dynamic optimization: Improving memory-
hierarchy performance by continuously adapt-
ing the internal storage layout of heap objects
at run-time. Tech. Rep. 99-21 (May). Univer-
sity of California, Irvine, Irvine, CA. Revised
September, 1999.

KLAIBER, A. 2000. The technology behind Crusoe
processors. Tech. Rep. (Jan.), Transmeta Corpo-
ration, Santa Clara, CA.

KNUTH, D. E. 1971. An empirical study of Fortran
programs. Softw.—Pract. Exp. 1, 105–133.

KRALL, A. 1998. Efficient JavaVM just-in-time
compilation. In Proceedings of the 1998 In-
ternational Conference on Parallel Architec-
tures and Compilation Techniques (PACT ’98).
205–212.

KRALL, A. AND GRAFL, R. 1997. A Java just-in-time
compiler that transcends JavaVM’s 32 bit bar-
rier. In Proceedings of PPoPP ’97 Workshop on
Java for Science and Engineering.

LEE, P. AND LEONE, M. 1996. Optimizing ML with
run-time code generation. In Proceedings of
PLDI ’96. 137–148.

LEE, S., YANG, B.-S., KIM, S., PARK, S., MOON, S.-M.,
EBCIOĞLU, K., AND ALTMAN, E. 2000. Efficient
Java exception handling in just-in-time compi-
lation. In Proceedings of Java 2000. 1–8.

LEONE, M. AND DYBVIG, R. K. 1997. Dynamo:
A staged compiler architecture for dynamic
program optimization. Tech. Rep. 490. Com-
puter Science Department, Indiana University,
Bloomington, IN.

LEONE, M. AND LEE, P. 1994. Lightweight run-time
code generation. In Proceedings of the ACM
SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation. 97–
106.

MARLET, R., CONSEL, C., AND BOINOT, P. 1999. Ef-
ficient incremental run-time specialization for
free. In PLDI ’99. 281–292.

MAURIELLO, R. 2000. Private communication.
MAY, C. 1987. Mimic: A fast System/370 simula-

tor. In Proceedings of the SIGPLAN ’87 Sym-
posium on Interpreters and Interpretive Tech-
niques (June). ACM Press, New York, NY, 1–
13.

MCCARTHY, J. 1960. Recursive functions of sym-
bolic expressions and their computation by
machine, part I. Commun. ACM 3, 4, 184–
195.

MCCARTHY, J. 1981. History of LISP. In History of
Programming Languages, R. L. Wexelblat, Ed.
Academic Press, New York, NY, 173–185.

MILLER, T. C. 1977. Tentative compilation: A de-
sign for an APL compiler. In APL ’79 Conference
Proceedings. Volume 9 Published in APL Quote
Quad 9, 4 (June), Pt. 1, 88–95.

MITCHELL, J. G. 1970. The design and construction
of flexible and efficient interactive programming
systems. Ph.D. dissertation. Carnegie-Mellon
University, Pittsburgh, PA.

MITCHELL, J. G. 2000. Private communication.
MITCHELL, J. G., PERLIS, A. J., AND VAN ZOEREN,

H. R. 1968. LC2: A language for conversa-
tional computing. In Interactive Systems for Ex-
perimental Applied Mathematics, M. Klerer and
J. Reinfelds, Eds. Academic Press, New York,
NY. (Proceedings of 1967 ACM Symposium.)

MOCK, M., BERRYMAN, M., CHAMBERS, C., AND EGGERS,
S. J. 1999. Calpa: A tool for automating dy-
namic compilation. In Proceedings of the Sec-
ond ACM Workshop on Feedback-Directed and
Dynamic Optimization. 100–109.

NG, T. S. AND CANTONI, A. 1976. Run time interac-
tion with FORTRAN using mixed code. The Com-
put. J. 19, 1, 91–92.

PITTMAN, T. 1987. Two-level hybrid interpreter/
native code execution for combined space-time
program efficiency. In Proceedings of the SIG-
PLAN Symposium on Interpreters and Interpre-
tive Techniques. ACM Press, New York, NY, 150–
152.

PIUMARTA, I. AND RICCARDI, F. 1998. Optimizing di-
rect threaded code by selective inlining. In Pro-
ceedings of PLDI ’98. 291–300.

PLEZBERT, M. P. AND CYTRON, R. K. 1997. Does “just
in time” = “better late then never”? In Proceed-
ings of POPL ’97. 120–131.

POLETTO, M., ENGLER, D. R., AND KAASHOEK, M. F.
1997. tcc: A system for fast, flexible, and high-
level dynamic code generation. In Proceedings of
PLDI ’97. 109–121.

RAMSEY, N. AND FERNÁNDEZ, M. 1995. The New
Jersey machine-code toolkit. In Proceedings of
the 1995 USENIX Technical Conference. 289–
302.

RAU, B. R. 1978. Levels of representation of pro-
grams and the architecture of universal host ma-
chines. In Proceedings of the 11th Annual Micro-
programming Workshop (MICRO-11). 67–79.

RÉMY, D., LEROY, X., AND WEIS, P. 1999. Objective
Caml—a general purpose high-level program-
ming language. ERCIM News 36, 29–30.

ROSENBLUM, M., HERROD, S. A., WITCHEL, E., AND GUPTA,
A. 1995. Complete computer system simula-
tion: The SimOS approach. IEEE Parall. Distrib.
Tech. 3, 4 (Winter), 34–43.

SCHROEDER, S. C. AND VAUGHN, L. E. 1973. A high or-
der language optimal execution processor: Fast
Intent Recognition System (FIRST). In Proceed-
ings of a Symposium on High-Level-Language

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page29 of 64

Brief History of Just-In-Time 113

Computer Architecture. Published in SIGPLAN
8, 11 (Nov.), 109–116.

SEBESTA, R. W. 1999. Concepts of Programming
Languages (4th ed.). Addison-Wesley, Reading,
MA.

SMITH, R. B. AND UNGAR, D. 1995. Programming as
an experience: The inspiration for Self. In Pro-
ceedings of ECOOP ’95.

SUN MICROSYSTEMS. 2001. The Java HotSpot vir-
tual machine. White paper. Sun Microsystems,
Santa Clara, CA.

THIBAULT, S., CONSEL, C., LAWALL, J. L., MARLET,
R., AND MULLER, G. 2000. Static and dynamic
program compilation by interpreter specializa-
tion. Higher-Order Symbol. Computat. 13, 161–
178.

THOMPSON, K. 1968. Regular expression search al-
gorithm. Commun. ACM 11, 6 (June), 419–422.

TRANSMETA CORPORATION. 2001. Code morphing
software. Available online at http://www.
transmeta.com/echnology/architecture/code
morphing.html. Transmeta Corporation, Santa
Clara, CA.

TYMA, P. 1998. Why are we using Java again?
Commun. ACM 41, 6, 38–42.

UNG, D. AND CIFUENTES, C. 2000. Machine-
adaptable dynamic binary translation. In
Proceedings of Dynamo ’00. 41–51.

UNGAR, D. AND SMITH, R. B. 1987. Self: The power of
simplicity. In Proceedings of OOPSLA ’87. 227–
242.

UNGAR, D., SMITH, R. B., CHAMBERS, C., AND HÖLZLE, U.
1992. Object, message, and performance: How

they coexist in Self. IEEE Comput. 25, 10 (Oct.),
53–64.

UNIVERSITY OF MICHIGAN. 1966a. The System
Loader. In University of Michigan Executive
System for the IBM 7090 Computer, Vol. 1.
University of Michigan, Ann Arbor, MI.

UNIVERSITY OF MICHIGAN. 1966b. The “University
of Michigan Assembly Program” (“UMAP”). In
University of Michigan Executive System for
the IBM 7090 Computer, Vol. 2. University of
Michigan, Ann Arbor, MI.

VAN DYKE, E. J. 1977. A dynamic incremental com-
piler for an interpretive language. Hewlett-
Packard J. 28, 11 (July), 17–24.

VAN ROY, P. 1994. The wonder years of sequential
Prolog implementation. J. Logic Program. 19–
20, 385–441.

WICKLINE, P., LEE, P., AND PFENNING, F. 1998. Run-
time code generation and Modal-ML. In Proceed-
ings of PLDI ’98. 224–235.

WIRTH, N. AND GUTKNECHT, J. 1989. The Oberon
system. Softw.—Pract. Exp. 19, 9 (Sep.), 857–
893.

YANG, B.-S., MOON, S.-M., PARK, S., LEE, J., LEE, S.,
PARK, J., CHUNG, Y. C., KIM, S., EBCIOĞLU, K.,
AND ALTMAN, E. 1999. LaTTe: A Java VM just-
in-time compiler with fast and efficient register
allocation. In Proceedings of the International
Conference on Parallel Architectures and Com-
pilation Techniques. 128–138. IEEE Computer
Society Press, Los Alamitos, CA.

ZHENG, C. AND THOMPSON, C. 2000. PA-RISC to
IA-64: Transparent execution, no recompilation.
IEEE Comput. 33, 3 (March), 47–52.

Received July 2002; revised March 2003; accepted February 2003

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page30 of 64

EXHIBIT I

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page31 of 64

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE AMERICA’S RESPONSES AND OBJECTIONS TO GOOGLE’S FIRST SET OF INTERROGATORIES
CASE NO. CV 10-03561 WHA
pa-1435675

MORRISON & FOERSTER LLP
MICHAEL A. JACOBS (Bar No. 111664)
mjacobs@mofo.com
MARC DAVID PETERS (Bar No. 211725)
mdpeters@mofo.com
755 Page Mill Road
Palo Alto, CA 94304-1018
Telephone: (650) 813-5600 / Facsimile: (650) 494-0792

BOIES, SCHILLER & FLEXNER LLP
DAVID BOIES (Admitted Pro Hac Vice)
dboies@bsfllp.com
333 Main Street
Armonk, NY 10504
Telephone: (914) 749-8200 / Facsimile: (914) 749-8300
STEVEN C. HOLTZMAN (Bar No. 144177)
sholtzman@bsfllp.com
1999 Harrison St., Suite 900
Oakland, CA 94612
Telephone: (510) 874-1000 / Facsimile: (510) 874-1460

ORACLE CORPORATION
DORIAN DALEY (Bar No. 129049)
dorian.daley@oracle.com
DEBORAH K. MILLER (Bar No. 95527)
deborah.miller@oracle.com
MATTHEW M. SARBORARIA (Bar No. 211600)
matthew.sarboraria@oracle.com
500 Oracle Parkway
Redwood City, CA 94065
Telephone: (650) 506-5200 / Facsimile: (650) 506-7114

Attorneys for Plaintiff
ORACLE AMERICA, INC.

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.

Plaintiff,

v.

GOOGLE INC.

Defendant.

Case No. CV 10-03561 WHA

PLAINTIFF’S RESPONSES AND
OBJECTIONS TO DEFENDANT
GOOGLE INC.’S FIRST SET OF
INTERROGATORIES TO
PLAINTIFF ORACLE AMERICA,
INC. (NOS. 1-10)

Dept.: Courtroom 9, 19th Floor
Judge: Honorable William H. Alsup

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page32 of 64

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE AMERICA’S RESPONSES AND OBJECTIONS TO GOOGLE’S FIRST SET OF INTERROGATORIES
CASE NO. CV 10-03561 WHA 18
pa-1435675

INTERROGATORY NO. 8:

Identify with specificity all portions of the Java documentation that were automatically

generated using software and explain how each was generated.

RESPONSE TO INTERROGATORY NO. 8:

Generally, all Java API documentation is automatically generated using the Javadoc

software tool. Javadoc is a documentation generator developed by Sun Microsystems. Javadoc is

used to generate API documentation in HTML format from Java source code, based on

standardized tags and comments written by source code programmers. A Javadoc comment is set

off from source code by comment tags “/**” and “*/”. For example, the first paragraph in such a

comment may be a description of the method documented. Next, certain tags are used to signify

certain information (e.g., @param name description describes a method parameter, @return

description describes a method return value, @throws describes an exception the method may

throw).

Discovery is ongoing, and Oracle has not yet completed its investigation of the documents

and facts relevant to the claims and defenses asserted in this action. Accordingly, Oracle’s

responses are based on the information reasonably available at this time and Oracle will

supplement this response as appropriate under the Federal Rules of Civil Procedure.

INTERROGATORY NO. 9:

State in detail the terms of a fair, reasonable and non-discriminatory license to Oracle’s

TCK consistent with Oracle’s obligations under the Java Specification Participation Agreement,

including the bases of any computation of any monetary elements of such a license and an

explanation of why such a license is fair, reasonable and non-discriminatory.

RESPONSE TO INTERROGATORY NO. 9:

The JSPA permits a Specification Lead to impose terms and conditions as part of a TCK

license. Any interested party may license the Spec Lead’s TCK under “non-discriminatory, fair

and reasonable” terms and conditions and “such terms and conditions shall be determined by the

Spec Lead in its reasonable discretion.” (JSPA, § 5.F.I.) Oracle’s TCK licenses comport with its

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page33 of 64

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE AMERICA’S RESPONSES AND OBJECTIONS TO GOOGLE’S FIRST SET OF INTERROGATORIES
CASE NO. CV 10-03561 WHA 19
pa-1435675

obligations under the JSPA, and, with respect to the terms of its TCK licenses, Oracle directs

Google to its TCK licenses produced in this action pursuant to Fed. R. Civ. P. 33(d).

As for the terms of any TCK license to Android, none has ever been requested, and Oracle

accordingly has never considered what reasonable terms or royalty computation of one might be.

Issuing a TCK license to Android makes no sense, given that Android does not implement the

entire Java specification and is accordingly not compliant.

In addition to the general objections stated above, Oracle further objects to this

interrogatory insofar as it seeks information protected from discovery by the attorney-client

privilege or the attorney work-product doctrine. Oracle further objects to this request on the

grounds that determinations of why or whether the terms of any license are fair, reasonable, and

non-discriminatory are purely matters of legal opinion and are therefore not within the scope of

inquiry permitted by Fed. R. Civ. P. 33(a)(2). Discovery is ongoing, and Oracle has not yet

completed its investigation of the documents and facts relevant to the claims and defenses

asserted in this action. Accordingly, Oracle’s responses are based on the information reasonably

available at this time and Oracle will supplement this response as appropriate under the Federal

Rules of Civil Procedure.

INTERROGATORY NO. 10:

State in detail Oracle’s factual bases for its allegation that the doctrine of assignor

estoppel bars Google from challenging the validity of each of the patents-in-suit to which Oracle

contends the doctrine applies.

RESPONSE TO INTERROGATORY NO. 10:

Assignor estoppel bars Google from challenging the validity of any patent assigned by an

inventor with whom Google is in privity. Google hired named inventors of Oracle’s patents—

including at least Frank Yellin, co-inventor of the ’520 patent, and Lars Bak and Robert

Griesemer, co-inventors of the ’205 patent—to work on Java and Web browser technologies.

Google is in the best position to know how it availed itself of the inventors’ knowledge and

assistance. As the inventors’ employer, it is Google, not Oracle that possesses detailed

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page34 of 64

EXHIBIT J

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page35 of 64

8/30/10 N.Y. Times B1
2010 WLNR 17231951

New York Times (NY)
Copyright 2010 The New York Times Company

August 30, 2010

Section: B

Software War Pits Oracle Vs. Google

STEVE LOHR

Software war builds following Oracle's filing of lawsuit against Google, accusing it of copyright and patent in-
fringement for its Android operating system for smartphones and other mobile devices; Oracle claims Google is
using ideas and code from Java software tools initially developed by Sun Microsystems in 1995; Sun was pur-
chased by Oracle in January; Google says software was built without using Sun's intellectual property, instead
claiming that Oracle seeks to re-establish corporate control of open-sourced Java technology; photo (M)

Free open-source software began with high-technology tinkerers and researchers. Sharing code and ideas was
their priority, not profits. In the tech industry, they were sometimes compared to socialists and communists.

Those days are long gone. Some of the communal idealism remains, but as open-source software is used more
by big technology companies including I.B.M., Oracle, Hewlett-Packard, Google and Apple -- even Microsoft --
it has also become a weapon in corporate warfare.

An unusually public salvo came this month, when Oracle sued Google, accusing it of copyright and patent in-
fringement. Oracle claims that Google's Android operating system for smartphones and other mobile devices is
illegally using ideas and code from Java, a set of software tools initially developed by Sun Microsystems in
1995. Oracle bought Sun in January,

Google denies the charges against Android, which is also open-source software, saying that it built the operating
system and its own Java tools without using Sun's intellectual property.

Google instead sees the suit as a move by Oracle to re-establish corporate control of Java, something that Sun's
executives were reluctant to do. ''This action is not against Android per se but against any Java development not
sanctioned by Oracle,'' said Kent Walker, general counsel of Google. ''The lawsuit is trying to put the genie back
in the bottle.''

8/30/10 NYT B1 Page 1

© 2011 Thomson Reuters. No Claim to Orig. US Gov. Works.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page36 of 64

http://www.westlaw.com/Find/Default.wl?rs=dfa1.0&vr=2.0&DB=BC-COMPANYSRBD&Cite=bcco%28IF2FDD61141E911DDAD6B0014224D2780%29&FindType=bcf

With open-source software, programmers can view the underlying source code and make modifications and fix
bugs, as long as they abide by certain rules. Open-source programs are typically distributed free.

An estimated three-quarters of all open-source software is chugging away in service of the profit-seeking cor-
porate world. It is used, in the form of the Linux operating system or the Apache Web server, to run data centers
that power the Web.

Every company deploys open source differently as a tool to cut costs or as a weapon to gain an advantage over
rivals.

The corporate battles are fought with software programmers who contribute to open-source programs, in the
marketplace with sales campaigns and in standards bodies that govern open-source projects. The Oracle-Google
clash is the exceptional case that ended up in court.

Their confrontation, according to Douglas Lea, a computer scientist at the State University of New York at Os-
wego, is a new front in what he calls ''the open-source proxy wars,'' in which big companies use open source to
gain an upper hand in the commercial marketplace.

''It's not so much good companies and bad companies in this kind of situation,'' said Mr. Lea, a member of the
executive committee of the Java Community Process, a group that defines Java features and standards. ''These
companies compete viciously and have different interests. And in this case, you have two corporations that
champion different forms of open source.''

The roots of the Oracle suit go back well before Oracle acquired Sun. After Sun made Java open source in 2006
to broaden its adoption, its strategy was to let developers and companies freely use the Java technology de-
ployed in data centers. Google was a major participant in contributing features and shaping standards for this
so-called big Java in the Java Community Process, where Sun (now Oracle) retains the status of first among
equals.

But Sun decided it would make money in the fast-growing field of cellphones with a set of software tools
tailored for that market, called Java Micro Edition. This ''small Java'' is free for most developers, but Sun negoti-
ates commercial licenses for big companies that want to make their own products. Licensees include Nokia, Re-
search In Motion, Motorola, LG, Samsung, Vodafone and T-Mobile.

These licenses are individually negotiated, typically involve payments of tens of millions of dollars a year, and
allow companies to modify code and not make those changes public, said a lawyer involved in rounds of these
negotiations, who asked not to be named because the contracts were private.

Google took a different course in the cellphone business. In 2007, it founded the Open Handset Alliance and was
joined by several cellphone makers and telecommunications companies. Its Android software is open source, un-

8/30/10 NYT B1 Page 2

© 2011 Thomson Reuters. No Claim to Orig. US Gov. Works.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page37 of 64

http://www.westlaw.com/Find/Default.wl?rs=dfa1.0&vr=2.0&DB=BC-COMPANYSRBD&Cite=bcco%28IFBEC5DA141E911DDAD6B0014224D2780%29&FindType=bcf
http://www.westlaw.com/Find/Default.wl?rs=dfa1.0&vr=2.0&DB=BC-COMPANYSRBD&Cite=bcco%28I5956C91441EC11DDAD6B0014224D2780%29&FindType=bcf

der a different licensing model, and outside Oracle's control.

''The dispute between Oracle and Google is really about control -- Google's ability to control the evolution of the
Android technology,'' said John Rizzo, vice president for technology strategy for the Aplix Corporation, which
makes Java-based software tools. Aplix is a member of both the Open Handset Alliance and the Java Com-
munity Process.

Still, Google and Sun held talks over the last three years about reaching an agreement, but they made little pro-
gress. Sun prepared the basis of the lawsuit that Oracle eventually filed, and identified the seven patents that Or-
acle accuses Google of infringing, said a former Sun manager, who asked not to be identified because of the
suit.

Sun eventually chose not to sue Google, the former Sun manager said, because it decided a patent lawsuit would
undercut the company's open-source efforts under Jonathan Schwartz, Sun's chief executive who resigned in
February after the Oracle acquisition.

In 2005, Sun released an open-source version of its Solaris operating system, which is used in data centers. Soft-
ware patents are controversial, especially among open-source developers. If Sun filed a patent suit, the former
manager said, Mr. Schwartz feared the move would alienate many open-source enthusiasts and potential custom-
ers, from Silicon Valley start-ups to governments around the world that are pursuing open-source initiatives.

The legal preparations were led by Noreen Krall, Sun's former chief intellectual property counsel. Ms. Krall
joined Apple this year as its senior director for intellectual property law and litigation. In March, Apple sued the
cellphone maker HTC, saying its Android-based phone infringed on patents for Apple's iPhone. Google was not
sued, but Google issued a statement saying ''we stand behind'' the Android operating system and its industry
partners.

With its purchase of Sun, ''Oracle acquired a lawsuit it could bring,'' said Eben Moglen, a law professor at
Columbia who advises on free and open-source software projects. And Oracle's chief executive, Lawrence J. El-
lison, Professor Moglen added, is ''taking advantage of this asset at a time when others are interested in fighting
Android.'' Mr. Ellison is a close friend of Apple's chief executive, Steven P. Jobs.

Oracle is mainly a traditional commercial software company, making its money selling software licenses. Oracle
supports Linux, but as a way to reduce the total hardware and software costs to customers using its database
software, the company's profit-making jewel. Oracle is pulling back from OpenSolaris.

For its part, Google is not in the traditional software business. Its model mimics broadcast television -- its ser-
vices (including software) are free, and it makes money on advertising.

The noncombatants -- open-source developers -- are hoping for an armistice between Oracle and Google, or at

8/30/10 NYT B1 Page 3

© 2011 Thomson Reuters. No Claim to Orig. US Gov. Works.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page38 of 64

http://www.westlaw.com/Find/Default.wl?rs=dfa1.0&vr=2.0&DB=BC-COMPANYSRBD&Cite=bcco%28I4394545341EA11DDAD6B0014224D2780%29&FindType=bcf
http://www.westlaw.com/Find/Default.wl?rs=dfa1.0&vr=2.0&DB=BC-COMPANYSRBD&Cite=bcco%28IE27AC520318D11DEBDC5B2938953E529%29&FindType=bcf

least a swift resolution to remove the uncertainty.

''It's really hard to predict the consequences of big companies being nasty to each other,'' said Mr. Lea, the uni-
versity computer scientist.

PHOTO: Andy Rubin oversees product strategy for the Android operating system at Google. (PHOTOGRAPH
BY WALLY SANTANA/ASSOCIATED PRESS) (B4)

---- INDEX REFERENCES ---

COMPANY: SUN MICROSYSTEMS BELGIUM NV; SUN MICROSYSTEMS DO BRASIL INDUSTRIA E
COMERCIO LDA; VODAFONE EGYPT TELECOMMUNICATIONS COMPANY S AE; SUN MICROSYS-
TEMS DANMARK APS; SOFTWARE AG; SUN MICROSYSTEMS OY; HEWLETT PACKARD EUROPE
BV; SUN MICROSYSTEMS SLOVAKIA S R O; VODAFONE AG; SUN CORP; HEWLETT PACKARD
EUROPA HOLDING BV; SUN MICROSYSTEMS POLAND SP ZOO; ORACLE AMERICA INC; ORACLE
NORGE AS; SUN MICROSYSTEMS SCOTLAND BV; HEWLETT PACKARD FINANCIAL SERVICES CO;
HEWLETT PACKARD HOLDING FRANCE SAS; VODAFONE LTD; SUN MICROSYSTEMS DE CHILE
SA; SUN MICROSYSTEMS SCOTLAND LP; NOKIA PTE LTD; HEWLETT PACKARD INDIGO BV; SUN
MICROSYSTEMS ITALIA SPA; GOOGLE SWEDEN AB; LAFARGE SA ADR; ORACLE DANMARK APS;
HEWLETT PACKARD SIA; HEWLETT PACKARD S R O; HEWLETT PACKARD; APLIX INC; HEWLETT
PACKARD CO; VODAFONE D2 GMBH; SUN MICROSYSTEMS AUSTRALIA PTY LTD; HEWLETT
PACKARD INDIA SALES PVT LTD; SUN MICROSYSTEMS (HELLAS) SA; SUN MICROSYSTEMS PTE
LTD; JAVA; HEWLETT PACKARD INTERNATIONAL BANK PLC; APPLE GMBH; SUN MICROSYS-
TEMS LTD; SUN MICROSYSTEMS IRELAND LTD; HEWLETT PACKARD GOUDA BV; HEWLETT
PACKARD TEKNOLOJI COZUMLERI LTD STI; HEWLETT PACKARD PHILIPPINES CORP; SUN MI-
CROSYSTEMS LLC; HEWLETT PACKARD GESELLSCHAFT MBH; SUN MICROSYSTEMS; SUN MI-
CROSYSTEMS AS; SUN MICROSYSTEMS SCOTLAND HOLDING LP; HEWLETT PACKARD D O O
DRUZBA ZA TEHNOLOSKE RESITVE; HEWLETT PACKARD (ROMANIA) SRL; SUN MICROSYSTEMS
(NZ) LTD; SAMSUNG; NOKIA CORP; ORACLE SVENSKA AB; MICROSOFT DEVELOPMENT CENTER
COPENHAGEN APS; SUN MICROSYSTEMS AB; SUN MICROSYSTEMS GLOBAL SERVICES BV; SUN
MICROSYSTEMS OF CANADA INC; SUN MICROSYSTEMS CZECH S R O; HEWLETT PACKARD
SOUTH AFRICA (PROPRIETARY) LTD; GUANGXI LIUGONG MACHINERY CO LTD; SUN MICROSYS-
TEMS (SCHWEIZ) AG; HEWLETT PACKARD APS; HEWLETT PACKARD NORGE AS; SUN MI-
CROSYSTEMS EXCHANGE INC; GOOGLE LIMITED LIABILITY COMPANY GOOGLE OOO; HEW-
LETT PACKARD NEW ZEALAND; SUN MICROSYSTEMS KK; LG CORP; VODAFONE HUNGARY MO-
BILE TELECOMMUNICATIONS CO LTD; HEWLETT PACKARD DEVELOPMENT COMPANY LP;
HEWLETT PACKARD FRANCE SAS; NOVADIGM INC; SUN MICROSYSTEMS SOUTH AFRICA;
LEAGUE ALLOY CO LTD; HEWLETT PACKARD INDUSTRIAL PRINTING SOLUTIONS EUROPE
BVBA; HEWLETT PACKARD PORTUGAL LDA; ORACLE CORP; NOKIA KOMUNIKASYON AS; OR-
ACLE; GOOGLE DENMARK APS; JAVA BHD; HEWLETT PACKARD MANUFACTURING LTD; SUN
MICROSYSTEMS EGYPT LLC; SUN MICROSYSTEMS SCOTLAND LTD; HEWLETT PACKARD LTD;
HEWLETT PACKARD TECHNOLOGY LICENSES AND LICENSING LTD; HEWLETT PACKARD DOO;
OBSHCHESTVO S OGRANICHENNOI OTVETSTVENNOSTIU "NOKIA"; GOOGLE SPAIN SL; HEW-
LETT PACKARD OY; SUN MICROSYSTEMS (MIDDLE EAST) BV; GOOGLE CZECH REPUBLIC S R O;

8/30/10 NYT B1 Page 4

© 2011 Thomson Reuters. No Claim to Orig. US Gov. Works.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page39 of 64

SUN MICROSYSTEMS EUROPE PROPERTIES BV; HEWLETT PACKARD GMBH; VODAFONE
TELEKOMUNIKASYON AS; APLIX CORP; MICROSOFT CORP; SUN MICROSYSTEMS BILGISAYAR
SISTEMLERI LTD STI; SUN MICROSYSTEMS MIDDLE EAST; APPLE RETAIL ITALIA SRL; SUN MI-
CROSYSTEMS GES MBH; SUN MICROSYSTEMS NEDERLAND BV; HEWLETT PACKARD SARL;
GOOGLE INC; SML SOCIETE MARSEILLAISE DE LINGERIE SARL; VODAFONE CZECH REPUBLIC
AS; HEWLETT PACKARD NEDERLAND BV; SUN MICROSYSTEMS EUROPEAN HOLDING BV; SUN
MICROSYSTEMS GMBH; SAMSUNG SEMICONDUCTOR INC

NEWS SUBJECT: (Information Technology Crime (1IN42); Legal (1LE33); Intellectual Property (1IN75); Pat-
ents & Trademarks (1PA79); Economics & Trade (1EC26); Business Litigation (1BU04); Corporate Events
(1CR05); Technology Law (1TE30); Online Legal Issues (1ON39); Business Management (1BU42); Business
Lawsuits & Settlements (1BU19))

INDUSTRY: (Software Products (1SO56); Electronics (1EL16); I.T. (1IT96); Java (1JA10); Software (1SO30);
Palmtop Computing (1PA77); Mobile Phones & Pagers (1WI07); Entertainment (1EN08); Information Manage-
ment (1IN35); Internet Regulatory (1IN49); Communications Software (1CO45); Palmtop Operating Systems &
Software (1PA15); Database Management Systems (1DA88); Broadcast TV (1BR25); Software Development
(1SO24); Consumer Products & Services (1CO62); Internet (1IN27); Consumer Electronics (1CO61); Internet
Software (1IN50); Software Technology (1SO75); Telecom (1TE27); Internet Technology (1IN39); I.T. in Tele-
com (1IT42); Telecom Equipment (1TE98); Security (1SE29); Programming Languages (1PR09); Telecom Con-
sumer Equipment (1TE03); TV (1TV19))

Language: EN

OTHER INDEXING: (ANDROID; APACHE WEB; APLIX; APLIX CORP; APPLE; GOOGLE; HEWLETT
PACKARD; JAVA; JAVA COMMUNITY PROCESS; LG; LINUX; MICROSOFT; NOKIA; OPEN HANDSET
ALLIANCE; ORACLE; SAMSUNG; SOFTWARE; SOFTWARE WAR PITS; STATE UNIVERSITY; SUN;
SUN MICROSYSTEMS; VODAFONE) (Douglas Lea; Eben Moglen; Ellison; I.B.M., Oracle; John Rizzo;
Jonathan Schwartz; Kent Walker; Krall; Lawrence J. Ellison; Lea; Licensees; Moglen; Noreen Krall; Oracle;
Schwartz; Sharing; Steven P. Jobs.; WALLY SANTANA)

EDITION: Late Edition - Final

Word Count: 1279
8/30/10 NYT B1
END OF DOCUMENT

8/30/10 NYT B1 Page 5

© 2011 Thomson Reuters. No Claim to Orig. US Gov. Works.

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page40 of 64

EXHIBIT K

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page41 of 64

Published February 21, 2011 | Reuters

The 2011 installment of Mobile World Congress, which gathered 60,000
professionals from 200 countries, served as the official coming-out party for the
next generation of Android smartphones and tablets.

Android had a massive, two-floor booth packed with all the new smartphones
and tablets shipping in the coming months running off the various Android
platforms, including Ericsson's Xperia Play phone, which operates on
Gingerbread, and LG's Optimus Pad tablet, which is powered by Honeycomb.

The Android booth featured a huge arcade section where developers from
around the world showcased the next generation of mobile games. While
graphics and gameplay have improved in the mobile space over the years, the
new wave of smartphones and tablets will push the capabilities of these devices
to the level of PlayStation 3 or Xbox 360 -- and beyond even the best 4
and games that are currently on the market.

" drive the mobile business because they're the best showcase of what these new devices can really do," said
Gonzague de Vallois, senior vice president of publishing at Gameloft, one of the largest mobile game companies in the world. "Our
experience in the console market is helping us deliver quality titles to these new devices for the mobile market."

Gameloft, which previously supported Apple's launch of iPhone and iPad with games, had franchises like Asphalt 6, Let's Golf and
NOVA running in autostereoscopic (glasses free) 3D at LG's booth on the new Optimus 3D phone. The company also will support
the March launch of Xperia Play with 10 titles, including Star Battalion. And the publisher has recently started developing new
games to run on NVIDIA's Tegra 2 dual-core technology.

Tegra 2 brings PC gaming graphics and speed from just a few years ago to the mobile space on new Android smartphones and
tablets, which will run 10x faster than the processors in today's smartphones like iPhone 4. The Tegra 2's dedicated graphics
processor also delivers 1080p HDTV playback of movies, TV shows and games. On battery life, Tegra's ultra low-power design
delivers over 16 hours of HD video or 140 hours of music on a single charge.

"This technology will impact the games we release because it will absolutely increase the available market," said Mike Breslin, vice
president of marketing, Glu Mobile. "There will be a lot more people with access to these new smartphones and tablets thanks to the
marketing push from Google, and all of the companies, carriers and headset makers."

Last fall, Android overtook Symbian to become the top smartphone platform in the world. According to research firm Canalys, global
sales of Android phones in the fourth quarter of 2010 was 33.3 million, compared to 31 million Symbian phones, 16.2 million Apple
phones, 14.6 million RIM devices and 3.1 million phones.

Overall, the global smartphone market grew 89% compared to the fourth quarter of 2009, exceeding 100 million units for the first
time. And 2011 is poised to be an even bigger breakthrough year for Android.

Another new trend showcased at Mobile World Congress was cross-platform gaming on Android and Tegra devices, which will allow
players to team up in games like Trendy Entertainment's Dungeon Defenders: First Strike to play across PlayStation 3, PC and
mobile platforms.

"This is a really profound change in the way mobile games are designed," said Jeremy Stieglitz, development director at Trendy
Entertainment. "There will be a huge influx of quality content very quickly on these new Tegra-based platforms, where you basically
can have the same game running on a mobile device as you have on a PC or console."

NVIDIA showcased brand new Tegra 3 technology at the show, code-named Kal-El after Superman. New phones will ship with this
quad-core chip beginning this August and tablets will follow in late fall. NVIDIA demonstrated a game, Great Battles Medieval, that
ran at 720p HD and featured 650 enemy soldiers on the field at once.

According to Michael Rayfield, general manager of NVIDIA's mobile business unit, over the next three years projects codenamed

 Print Close

ADVERTISEMENT

Google

Sony

iPhone
iPad

Check out FOXBusiness.com's new technology page at foxbusiness.com/technology

Video games

NVIDIA consumer electronics

Microsoft

3/31/2011 12:43 PM

http://www.foxbusiness.com/technology/2011/02/21/google-android-vide... 1 of 2

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page42 of 64

Wayne, Logan, and Stark will further push the gaming potential of mobile devices. By 2014, when Stark becomes a reality, the
technology will feature a 75x improvement over the performance of today's Tegra 2.

"Our customers and partners have already indicated that they're confident they can use everything we give them," said Rayfield.

HTC introduced a new tablet, Flyer, which will introduce streaming subscription video game service OnLive to the mobile space.
Gamers will be able to play games like Assassin's Creed Brotherhood, NBA 2K11 and LEGO Harry Potter on the new tablet, or
connect the tablet to any HDTV, without needing to buy any new hardware or software.

There is a negative side to the increased capabilities of mobile gaming. And that's for portable gaming companies like Sony, which
will launch its Next Generation PlayStation (NGP) system this fall.

"IHS believes that the market opportunity for a specialist device such as the NGP is shrinking rather than growing, and that short-
and medium-term market conditions are less supportive of the release of a high-end handheld console," said Piers Harding-Rolls,
video game analyst at HIS Screen Digest.

Harding-Rolls said by the end of the fourth year after its release, the NGP is expected to accrue a total installed base of 22.8 million
units. In comparison, the PSP achieved a base of 30.7 million, 34.8% higher, during the same length of time.

"The competitive landscape for handheld and on-the-move gaming has been highly disrupted in recent times, with disruption
occurring on the device, content and distribution levels," added Harding-Rolls.

Moving forward, more consumers will use one device for everything, including gaming, multimedia, entertainment and Web
browsing. And Android is perfectly positioned to take advantage of this shift.

http://www.foxbusiness.com/technology/2011/02/21/google-android-video-games-dominate-mobile-world-congress/

. . For FOXBusiness.com technical issues write to ; for all other feedback, write to .

Quotes delayed at least 15 minutes. Market Data provided by Interactive Data (). Powered and implemented by . Company

fundamental data provided by . Earnings estimates data provided by Zacks. Mutual fund data provided by Lipper. Economic data provided by Econoday. Dow Jones & Company

Terms & Conditions.

This material may not be published, broadcast, rewritten, or redistributed. © 2011 FOX News Network, LLC. All rights reserved. All market data delayed 20 minutes.

 Print Close

URL

Home Video Markets Industries Technology Personal Finance Home Office Travel On Air Small Business RSS Feeds Mobile Contact Us About Us

FAQs

Fox News Advertise with us Jobs at FOX Business Network Internships at FBN

Terms of use Privacy Statement foxbusinessonline@foxbusiness.com feedback@foxbusiness.com

Terms & Conditions Interactive Data Managed Solutions

Morningstar

3/31/2011 12:43 PM

http://www.foxbusiness.com/technology/2011/02/21/google-android-vide... 2 of 2

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page43 of 64

EXHIBIT L

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page44 of 64

See a sample reprint in PDF format. Order a reprint of this article now

TECHNOLOGY FEBRUARY 17, 2011

Demotix

Attendees mingle at this week's conference in
Barcelona, where many companies launched devices
powered by Google's Android operating system.

Journal Community

By SHAYNDI RAICE

A year after wireless carriers gave Google Inc. a testy reception at their big industry conference in Barcelona, the
software company's Android operating system has become the star of the show.

Android powers every significant device launched at the Mobile World Congress and is benefiting from a big
marketing push by Google to trumpet its arrival.

Beyond the hype, it's becoming increasingly evident to carriers, handset makers and app developers that Android
is on equal footing, if not surpassing in some ways, Apple Inc.'s iOS platform. The concern now is that it could
become too powerful.

Nokia Corp. Chief Executive Stephen Elop said one reason he
decided to put his chips on Microsoft Corp.'s Windows Phone 7
platform instead of Android was because he was concerned
about creating a duopoly in the marketplace where Google and
Apple would maintain all the power.

That underscores the ambivalence of carriers that are relying on
Android for hit devices but worry about market concentration.

"To just have two companies is probably not healthy for the
ecosystem," said Fared Adib, vice president for device
operations at Sprint Nextel Corp.

Google's Android chief, Andy Rubin, puts no stock in that claim.
"It makes me uncomfortable when people say something open

source is too powerful," said Mr. Rubin, referring to the fact that Android code is available to anyone who wants
to use it without any fee. "One of the reasons we've achieved such adoption is because we've removed all control."

Carriers have been wary of Google for some time. A year ago in
Barcelona, Vodafone Group PLC Chief Executive Vittorio Colao
blasted Google's dominance of mobile advertising, suggesting
regulators should take a look. Telefonica SA Chairman Cesar
Alierta chimed in, complaining that search engines ride on top
of carriers' networks and don't share the money they make
doing so.

None of that has damped Android fever this year in Barcelona.

Dow Jones Reprints: This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues, clients or
customers, use the Order Reprints tool at the bottom of any article or visit www.djreprints.com

System Powers Slew of New Devices; Some Fear Market Duopoly With Apple's iOS

3/31/2011 12:53 PM

http://online.wsj.com/article/SB10001424052748703961104576148491... 1 of 2

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page45 of 64

Copyright 2011 Dow Jones & Company, Inc. All Rights Reserved
This copy is for your personal, non-commercial use only. Distribution and use of this material are governed by our Subscriber Agreement and by

copyright law. For non-personal use or to order multiple copies, please contact Dow Jones Reprints at 1-800-843-0008 or visit
www.djreprints.com

The little green Android robot is ubiquitous. There are Android
pins, an Android slide and there was even an Android drink at
an exclusive party held the by company last night. Twitter Inc.
Chief Executive Dick Costolo enjoyed some champagne from
flutes sporting an Android logo in the VIP area with Google
Chairman Eric Schmidt, as hordes of people waited outside the
club clamoring for entrance to the show's most talked-about
party.

Samsung Electronics Co. introduced a new Galaxy S
smartphone and tablet. HTC Corp. announced its first tablet along with five new smartphones. LG Electronics
Inc. showed off its 8.9-inch G-Slate tablet and the first 3D phone. Sony Ericsson introduced the Xperia Play. All
of those devices run on Android.

Google's big presence at what has traditionally been a carriers' conference highlights the all-important role of
software in a mobile industry where smartphones and data use are creating most of the value.

Android devices have been around for a couple of years but only really started getting traction in the past 15
months or so with the introduction of high-end devices by Motorola Mobility Holdings Inc. and HTC. Google says
it's now activating over 300,000 Android-powered devices a day, with 170 devices on the market and 169
carriers.

Some companies feel that even if Google is gaining uncomfortable amounts of power in the mobile market, they
have no choice but to get on board. LG, Samsung and especially Motorola all leveraged Android to get traction in
the smartphone market.

"I don't know that you can have it all," said Alain Mutricy, senior vice president, portfolio and devices product
management for Motorola Mobility. "If you want to be at the forefront of technology, that's what you have to do."

The bigger concern for carriers this year may be Apple. The combination of hugely popular devices with a closed
ecosystem of applications and billing gives the company a tenacious hold on the loyalty of carriers' customers.

This year, Vodafone's chief, Mr. Colao, specifically criticized vertically integrated closed systems when it comes
to in-application billing and called for openness and competition.

AT&T Inc. Chief Executive Randall Stephenson said content should be "device agnostic" and stored in the "cloud"
on AT&T's network.

Mr. Schmidt picked up the theme in his keynote Tuesday evening, saying cloud-based applications built on
HTML5 could allow devices to become interchangeable.

"All of a sudden, you have this ability, this agility," he said.

—Gustav Sandstrom contributed to this article.

3/31/2011 12:53 PM

http://online.wsj.com/article/SB10001424052748703961104576148491... 2 of 2

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page46 of 64

EXHIBIT M

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page47 of 64

MONDAY NOV 05, 2007

Congratulations Google, Red Hat and the Java Community!

I just wanted to add my voice to the chorus of others from Sun in offering my heartfelt
congratulations to Google on the announcement of their new Java/Linux phone platform,
Android. Congratulations!

I'd also like Sun to be the first platform software company to commit to a complete developer
environment around the platform, as we throw Sun's NetBeans developer platform for mobile
devices behind the effort. We've obviously done a ton of work to support developers on all
Java based platforms, and were pleased to add Google's Android to the list.

The Java platform has come a long way - we're on the vast majority of mobile
devices in the marketplace today (well over a billion phones at last count),
and with Google's mobile services (like gMail and Google Maps), along with
Yahoo!'s Go Mobile, alongside a massive spectrum of incredible
entertainment offerings from folks like Electronic Arts, we have by far and
away the most complete content ecosystem on the market today. Enabling
carriers, handset manufacturers, content creators - and most of all,
consumers - to get the most from their mobile devices.

And needless to say, Google and the Open Handset Alliance
just strapped another set of rockets to the community's
momentum - and to the vision defining opportunity across
our (and other) planets.

Today is an incredible day for the open source community,
and a massive endorsement of two of the industry's most
prolific free software communities, Java and Linux.

Stay tuned for specific details - for those so inclined, download NetBeans here to check out the industry's most
popular IDE for mobile Java development.

And in the spirit of offering congratulations, I'd like to offer a similar shout out to our friends at Red Hat Linux
- who today announced their support for the OpenJDK project. With friends like Google and Red Hat, it sure
seems like the momentum behind Java's on the rise...

Posted on 01:27PM Nov 05, 2007 | Comments[76]

Comments:

Why isn't Sun part of the OpenHandsetAlliance? Is it another case of NIH, since Google is not using
JavaFXMobile so Sun doesn't want to be part of it?

Posted by Enaiel on November 05, 2007 at 02:07 PM PST #

Jonathan, it is amazing the amount of value this has brought to Google's share prices as the investment
world was speculating on Google's play in this industry.

It is companies like Sun and Google, which are helping the possibility and connectivity of the net
expand on a daily basis.

Thank you

http://blogs.sun.com/jonathan/entry/congratulations_google

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page48 of 64

EXHIBIT N

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page49 of 64

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page50 of 64

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page51 of 64

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page52 of 64

EXHIBIT O

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page53 of 64

From: James Gosling <jag@scndprsn.eng.sun.com>
Date: Mon, 21 Aug 1995 14:48:43 +0800
Message-Id: <9508212148.AA18759@norquay.Eng.Sun.COM>

To: info@eolas.com, ses@tipper.oit.unc.edu
Cc: www-talk@w3.org

> > The licensed technology was invented in 1993 by a team led by Eolas CEO, Dr.
> > Michael Doyle, a UCSF faculty member and past Director of the university's
>
> In that case, the patent is worthless. Dynamic exchange of executable
> code over the internet for use in rendering documents has been addressed
> many times before. For example, a standard for the exchange of such
> information was discussed at the spring 1992 meeting of the implementors
> working group of NISO sub-committee Z39.50 which took place at the
> Library of Congress in Washington.

There's also Java which was started in 1990 and first demo'd in 1991;
the NeWS window system which transmitted executable application code
starting in 1985; PostScript was really dynamic exchange of executable
code for rendering documents, and it was done in 1980. Based of course
on ideas from Interpress where executable code for rendering documents
was being transmitted in the late 70s. Then there was a lisp system,
whose name a forget, which ran on Xerox's PDP-10 clones (MAXC) and
could dynamically download ui's/behaviour/graphics to Alto's in the
early 70s.

Received on Monday, 21 August 1995 17:49:00 GMT

This archive was generated by hypermail 2.2.0+W3C-0.50 : Wednesday, 27 October 2010 18:14:18 GMT

http://lists.w3.org/Archives/Public/www-talk/1995JulAug/0440.html#sta... 11/11/2010 12:31 AM

1 of 1

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page54 of 64

EXHIBIT P

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page55 of 64

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page56 of 64

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page57 of 64

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page58 of 64

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page59 of 64

EXHIBIT Q

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page60 of 64

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page61 of 64

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page62 of 64

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page63 of 64

Case3:10-cv-03561-WHA Document103 Filed03/31/11 Page64 of 64

	Ex G
	Ex G - Gough, Virtual Machines, Managed Code and Component Technology (2005)
	Ex H
	Ex H - Aycock, A Brief History of Just-in-Time (2003)
	Ex I
	Ex I - ORACLE Resp to GOOGLE Interrog 9
	Oracle_Resp_to_Google_1st_Rogs
	Ex. A to Response to Rog 2
	Ex. B to Response to Rog 2
	Ex. C to Response to Rog 2
	Ex. D to Response to Rog 2
	Ex. E to Response to Rog 2

	Ex J
	Ex J - Lohr, Software War Pits Oracle vs. Google (2010)
	Ex K
	Ex K - FoxBuisiness, Google Android, Video Games Dominate Mobile World Congress (2011)
	Ex L
	Ex L - WSJ.com Mobile World Congress_ Google's Android Big in Barcelona(2011)
	Ex M
	Ex M - Intro - 11-5-2007 - schwartz congratulations to Google on Release of Android
	Ex N
	Ex N - Gosling, The NEWs Book (1989)
	Ex O
	Ex O - Gosling - w3.org post RE Eolas and Java
	Ex P
	Ex P - Microsoft Press Computer Dictionary (2d ed 1994)

