EXHIBIT C

IP ASSET

133091.01600/21864785v.5

a2 United States Patent

Kienhofer et al.

US006931544B1

(10) Patent No.:
5) Date of Patent:

US 6,931,544 Bl
Aug. 16, 2005

(54) METHOD AND APPARATUS FOR
EXECUTING MULTIPLE JAVA (™)
APPLICATIONS ON A SINGLE JAVA(™)
VIRTUAL MACHINE

(75) Inventors: Jiirgen Kienhifer, Santa Cruz, CA
(US); Ranjit Deshpande, Santa Cruz,
CA (US)

(73) Assignee: The SCO Group, Inc., Lindon, UT
Us)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/464,352
(22) Filed: Dec. 15, 1999

Related U.S. Application Data
(60) Provisional application No. 60/112,803, filed on Dec.

18, 1998.
(51) Int. CL7 oo HO4L. 9/00; GOGF 9/44
(52) US.Cl oo, 713/200, 709/1; 709/316;
717/118; 717/119; 717/166
(58) Field of Searchc.cccoccoceenennee 713/201, 166,
713/200; 717/148, 119, 118, 166; 709/316,
709/1

(56) References Cited

OTHER PUBLICATIONS

Hawblitzel, et al., “Implementing Multiple Protection
Domains In Java”, Proceedings of the USENIX 1998
Annual Technical Conference, Jun. 15-19, 1998, pp. 259-
270.

Balfangz, et al., “Experience with Secure Multi-Processing in
Java”, Proceedings of the 18th International Conference on

Distributed Computing Systems, May 26-29, 1998, pp.
398-405.

“Sun Announces Availability of the Java HotSpot
Performance Engine”, Apr. 27, 1999.

“The Java HotSpot™ Virtual Machine”, copyright 2001.
“Java in the Enterprise: A Journey to Reliable Distributed
Applications”, copyright 2000-2001.

“Redefining the Open Architecture: WebGain’s Unique Ap-
proach to Developing Distributed Applications in Java™”,
copyright 1998-2001.

“Building Distributed Java™ Applications for the
Enterprise: How WebGain™ Makes It Easy”, copyright
1998-2001.

Primary Examiner—Gregory Morse
(74) Attorney, Agent, or Firm—Madson & Metcalf

(7) ABSTRACT

A modified JAVA(™) execution environment is described.
The modified environment supports multiple JAVA(™)
applications on a single JAVA(™) virtual machine (JVM).
This modified environment provides significant memory and
performance improvements when running multiple applica-
tions on a single computer system. Notably, no changes are
needed to the source code of an application to take advan-
tage of the modified environment. Further, embodiments of
the invention may support shared access to base classes
through the use of overlays. Additionally, system resource
permissions can be enforced based upon the user permis-
sions associated with a running application. Notably,
embodiments of the invention allow multiple applications to
share the abstract window toolkit (AWT) on a per display
basis. Since only a single garbage collection routine is
necessary, applications see improved performance relative
to running in different JVMs. Further, the shared base
classes eliminate significant memory overhead.

11 Claims, 1 Drawing Sheet

Java(TM)
Application 108

Java(TM)
Application 1088

Launch
Interface 202

F_Aﬁ)lia?i?)n _i
[Class Loader [

|

106

" Application —i
I Class Loader i

Multiple Application Class
Loader 206

Security
Manager 204
A |

Primordial Class Loader 104

Base Class Overlays 200

Base Classes 102

Java(TM) Virtual Machine 100

US 6,931,544 Bl

Aug. 16, 2005

U.S. Patent

00} duIyoe [ENMIA (WL)eAer

Z0| sesse|D aseg

00z sAepanQ sse|D eseg

v0l 19peoT] SSe[jelplolild

|
0z Jobeuep

Aunossg

90¢ Jopeo

sse|9 uonesyddy sidniniy

JapeoT] sse|)
uonesddy

_ lapeo sse|D
_ uoneolddy

l

3] 4 (uvoud)

001 auIyoe [eNUIA (N L)eAer

Z0| sosse|D aseq

¥01 19peoT SSE|D |elipJowd

20z @oBpa|
youneT

gg01 uoneoyddy

(WL)enrer

801 uoneoyddy
(WL)ener

g0\ uoneoyddy (W1)ener

US 6,931,544 B1

1
METHOD AND APPARATUS FOR
EXECUTING MULTIPLE JAVA (™)
APPLICATIONS ON A SINGLE JAVA(™)
VIRTUAL MACHINE

RELATED APPLICATIONS

This application relates to, incorporates by reference, and
claims priority from, U.S. Provisional Patent Application
Ser. No. 60/112,803 entitled, “Method and Apparatus for
Executing Multiple JAVA Applications on a Single JAVA
Virtual Machine”, filed Dec. 18, 1998, having inventor Dr.
Jirgen G. Kienhofer.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of improved execution
environments for software applications running in the
JAVA(™) language. In particular, the invention relates to
improvements designed to support the operation of multiple
unmodified JAVA(™) applications on an unmodified
JAVA(™) Virtual Machine.

2. Description of the Related Art
1. Description of Problem

JAVA(™) applications are transportable byte codes that
can be executed on a number of platforms. The execution
environment for JAVA(™) applications is a JAVA(™) Vir-
tual Machine (JVM). For each platform a JVM must be
available to execute the JAVA(™) applications. The speci-
fication of, and the implementation of, a JVM is described
in documents such as “JAVA(™) Virtual Machine”, John
Meyer and Troy Downing, O’Reilly and Associates, 1997.
Additionally, the book “The JAVA(™) Virtual Machine
Specification”, Tim Lindholm and Frank Yellin, Addison
Wesley, 1997, also describes a JVM.

For each JAVA(™) application that a user wishes to run
on a JAVA(™) Virtual Machine, a separate JVM must be run
together with a separate execution environment. This execu-
tion environment includes an object store in memory, also
referred to as a JAVA(™) heap, for storing JAVA(™) objects
and data. Also, the environment includes a “garbage collec-
tor” that deletes unused objects and compacts the JAVA(™)
heap. This arrangement consumes large amounts of system
memory or each JVM, and thus each application. When
used, as JAVA(™) was originally designed on a client
computer, this is riot a problem as a user is typically running
only one or two applications at a time. Further, the user’s
computer is dedicated to running those applications.

In contrast, server computers may require that multiple
JAVA(™) applications be running simultaneously. For
example, a server might be deployed to handle processing
for a large number of client computers. If the JAVA(™)
standard is followed, each of running JAVA(™) application
on the server would need to run in separate JVM’s, each with
an associated execution environment. Thus, each application
would have its own JAVA(™) heap and separate garbage
collection process. The multiplicity of the garbage collection
processes across all of the JVM’s can consume significant
amounts of processor time and lead to decreased perfor-
mance.

The JAVA(™) Virtual Machine could be rewritten in its
entirety to support multiple applications at one time. How-
ever, such an approach would require major re-architecting
of the JAVA(™) and/or JVM standards and specifications.

15

20

25

35

40

45

50

55

60

65

2

Additionally, JAVA(™) applications could be rewritten in
source code to support multiple applications on a single
JVM.

2. Prior Art JAVA(™) Execution Environment

Turning to FIG. 1, and the prior art JAVA(™) execution
environment, the execution environment includes a
JAVA(™) Virtual Machine 100, including JAVA(™) base
classes 102 and a primordial class loader 104. An optional
application class loader 106 is depicted as well as a single
JAVA(™) application 108. This is the typical JAVA(™)
execution environment according to the prior art.

In the normal operation of a JVM, a JAVA(™) application
compiled to run on the JVM arrives in a sequence of byte
codes arranged in class files. The class files, which can be
remotely or locally accessed, are loaded by class loaders and
executed in a threaded environment by the JVM. Execution
of JAVA(™) applications take place in threads, which are
part of thread groups, and invokes calls to methods of the
associated objects. Each thread that is created from a thread
in a given thread group also belongs to that thread group.
Executions of thread causes the creation of objects, which
are stored in portions of the JAVA(™) heap during run time.
An application is able to run on a JAVA(™) execution
environment with a large set of JAVA(™) base classes,
which are sometimes considered part of the JVM. The base
classes received calls from the application to enable many
basic functions.

Object creation during execution within the JVM utilizes
a class loader architecture. There are two types of class
loaders in the JAVA(™) execution environment. The first
type is a “primordial” class loader, e.g. the primordial class
loader 104. The primordial class loader is considered part of
the JVM itself and is designed to load certain class loaders.
Usually the primordial class loader 104 is used to load
classes of the application.

Another type of class loader is available for loading
objects. This type of class loader is a JAVA(™) class loader
object written in JAVA(™). This type of class loader can be
installed by a JAVA(™) application into a thread. When this
type of class loader is installed into a thread other applica-
tion objects within that thread are loaded using that class
loader.

Notably the prior art JVM does not allow for a hierarchy
of application class loaders. Thus, a JAVA(™) application
such as the JAVA(™) application 108 cannot install addi-
tional application class loaders.

3. Conclusion

The prior techniques do not permit the execution of
multiple unmodified JAVA(™) applications on a single
unmodified JAVA(™) Virtual Machine. Further, the prior
techniques do not support shared usage of the JAVA(™)
base classes by applications running on the JVM. Accord-
ingly, what is needed is a method and apparatus for sup-
porting multiple unmodified JAVA(™) applications on a
single JVM using a single copy of the base classes for all of
the JAVA(™) applications.

SUMMARY OF THE INVENTION

A modified JAVA(™) execution environment is
described. The modified environment supports multiple
JAVA(™) applications on a single JAVA(™) virtual machine
(JVM). This modified environment provides significant
memory and performance improvements when running mul-
tiple applications on a single computer system. Notably, no
changes are needed to the source code of an application to
take advantage of the modified environment. Further,

US 6,931,544 B1

3

embodiments of the invention may support shared access to
base classes through the use of overlays. Additionally,
system resource permissions can be enforced based upon the
user permissions associated with a running application.
Notably, embodiments of the invention allow multiple appli-
cations to share the abstract window toolkit (AWT) on a per
display basis. Since only a single garbage collection routine
is necessary, applications see improved performance relative
to running in different JVMs. Further, the shared base
classes eliminate significant memory overhead.

According to some embodiments of the invention, a class
loader and a thread group is dynamically generated for each
application to be run in the modified environment. This class
loader defines a name space for the application. Addition-
ally, the thread group defines the set of threads for that
application. The class loader also loads the application
classes into the JVM. The application itself can have an
application class loader, an application security manager,
and/or create additional thread groups.

As necessary, when the overlaid base classes are called,
the calling application can be determined. Two approaches
are used by some embodiments of the invention. In the first
approach, the class loader of the calling method is deter-
mined. This in turn allows the identification of the applica-
tion through reference to data associated with the class
loader. Another approach is to scan the thread group hier-
archy of the JVM to identify a thread group with which
application information has been associated by the class
loader. Once the application is identified, the underlying
base class functionality can be implemented using the appro-
priately selected files, resources, variable values, etc.

Additionally, embodiments of the invention can support
system resource permissions, €.g. user access rights, on a per
application basis. Each application can be associated with a
user.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates a JAVA(™) Virtual Machine environ-
ment according to the prior art.

FIG. 2 illustrates a JAVA(™) Virtual Machine environ-
ment according to one embodiment of the invention.

DETAILED DESCRIPTION

The modified JAVA(™) execution environment supported
by embodiments of the invention will be described with
reference to FIGS. 1 and 2. FIG. 1 shows the JAVA(™)
execution environment according to the prior art and was
described above. FIG. 2 shows the JAVA(™) execution
environment according to one embodiment of the invention
and will now be described in greater detail.

FIG. 2 shows the modified JAVA(™) execution environ-
ment according to one embodiment of the invention. Ele-
ments of FIG. 2 that are found in FIG. 1 are designated with
the same reference numerals. For example, FIG. 2 includes
the JVM 100. The JVM 100 used in FIG. 2 may be identical
to the JVM 100 used in FIG. 1, but should at least be a
substantially unmodified JVM.

The term “substantially unmodified” as used in this appli-
cation refers to a JVM or JAVA(™) application suitable for
use in the prior art JAVA(™) execution environment of FIG.
1. For example, a JVM supporting just in time (JIT) that can
execute substantially unmodified JAVA(™) applications
would be a substantially unmodified JVM. One further
example may be instructive. A JAVA(™) application 108 is
substantially unmodified, if it can be used in the execution

10

15

20

25

30

35

40

45

50

55

60

65

4

environment of FIG. 1 without the need for source code—or
byte code—modifications to run in the execution environ-
ment of FIG. 2.

Examples of substantially unmodified JVMs usable
according to embodiments of the invention include JVMs
from Sun Microsystems, Mountain View, Calif.; JVMs from
Microsoft Corporation, Redmond, Wash.; JVMs from Apple
Computer Corporation, Cupertino, Calif.; and/or other avail-
able JVMs. For the purposes of this discussion it will be
assumed that the JAVA(™) Virtual Machine complies with
a JAVA(™) standard and that the JAVA(™) applications
similarly comply with a JAVA(™) standard.

The elements of FIG. 2 will now be described in greater
detail. The substantially unmodified JVM 100 supports the
modified execution environment of FIG. 2. The substantially
unmodified JVM 100 includes base classes 102. The base
classes 102 are substantially unmodified base classes suit-
able for use in a standard JAVA(™) execution environment
such as the JAVA(™) execution environment of FIG. 1.

Additionally, FIG. 2 includes base class overlays 200. The
base class overlays 200 provides support for multiple
JAVA(™) applications using only a single copy of the base
class 102. The base class overlays 200, allow multiple
applications to reference the base classes 102 without con-
flicts due to different access privileges and/or base class
definitions that inhibit sharing. The base class overlays 200
will be described in further detail below. The modified
JAVA(™) execution environment also includes a primordial
class loader 104 that is substantially unmodified and suitable
for use according to the prior art JAVA(™) execution
environment.

The modified JAVA(™) execution environment includes a
multiple application class loader 206. This class loader
provides support for multiple applications. Additionally, a
security manager 204 provides for different degrees of
access to different applications based on privileges. The
multiple application class loader 206 handles the class
loading of JAVA(™) applications within the modified execu-
tion environment of FIG. 2.

Compare this to the standard execution environment of
FIG. 1, where the primordial class loader 104 would load the
JAVA(™) application 108. According to the modified execu-
tion environment of FIG. 2, the multiple application class
loader 206 would invoke the JAVA(™) application 108.

In order to support the launch of multiple applications, a
launch interface 202 is provided. The launch interface 202
may itself be a JAVA(™) application. The launch interface
202 may provide a command line interface or other interface
for invoking the execution of JAVA(™) applications within
the modified execution environment of FIG. 2. The launch
interface 202 may itself be loaded by the multiple applica-
tions class loader 206 as a JAVA(™) application running
within the modified JAVA execution environment. In some
embodiments, the launch interface may respond to remote
procedure invocations, or some other type of message, and
execute applications according to parameters specified in the
message. In some embodiments, the launch interface 202
provides a UNIX-style command line interface with log in
and security procedures.

The depiction of the multiple application class loader 206
as a single class loader for all applications is a simplification.
In fact, a class loader is dynamically generated for each
application. Thus, the launch interface 102, the JAVA(™)
application 108, and the JAVA(™) application 108B each
has a dynamically generated multiple application class
loader 206 responsible for loading the appropriate applica-
tion classes. Each of the dynamically generated multiple

US 6,931,544 B1

5

application class loaders can define its own namespace
within which the loaded applications will execute.

As shown in FIG. 2, once invoked from the launch
interface 202, JAVA(™) applications (e.g. the JAVA(™)
application 108) can have their respective classes loaded
within the modified execution environment of FIG. 2. Simi-
larly a second application, the JAVA(™) application 108B
could be loaded within the modified execution environment
of FIG. 2. These two applications would be sharing the same
JAVA(™) Virtual Machine 100 and the same base classes
102. However, the multiple application class loader 104
would place them in separate namespaces and would place
them in different thread groups. The base class overlays 200
ensure appropriate behavior of the base classes 102 for each
of the applications.

Notably, neither the JAVA(™) application 108 nor the
JAVA(™) application 108B need to be modified at the
source code level to operate within the modified execution
environment. The environment of FIG. 2 is transparent to
JAVA(™) applications running in the environment.

The modified execution environment of FIG. 2 only needs
a single garbage collection process and a single copy of the
base classes 102. This provides significant memory and
speed savings. In some experiments, this reduced the
memory overhead to enable execution of over one hundred
JAVA(™) applications on a single JVM—on a single server
computer, which would otherwise support only fourteen of
these applications at the same time. See also, Jirgen G.
Kienhofer, “Java Junction: Perkup, SCO Server Side Java
Technology”, in SCO Coredump, Summer 1999, Number
13, page 8, also available at <http://www.sco.com/devel-
oper/corel13/perkup.htm>.

The security manager 204 is an addition to the inherent
security models of JAVA(™). Prior art JVMs were typically
invoked on client machines by a specific user and the single
application ran with that user’s privileges. In contrast, the
execution environment of FIG. 2 would typically be invoked
with system privileges such as “root” on UNIX-like sys-
tems. As a result, each running application would, without
additional security, be capable of accessing the entire sys-
tem. Therefore, a security manager 204 can be provided to
enforce operating system security—or other security—
requirements.

In one embodiment of the invention, the security manager
204 uses parameters provided via the launch interface 202 to
control the permissions granted to running applications. For
example, if using the launch interface 202 an application is
invoked using the privileges of “user 17, the security man-
ager 204 would enforce operating system file permissions
and resource permissions for that application according to
the privileges granted to “user 1”. Examples of enforced
requirements include those for:

reading, writing, creating, deleting, modifying, or exam-

ining system resources such as files and sockets;
listening or accepting network connections to a reserved
port;

executing a program on the system or starting a sub

process

terminating the JAVA(™) run time environment of FIG. 2

loading dynamic libraries and native methods. Thus if the

permissions on a particular file “x” indicate that it is
owned by “user 2” and not readable by other users, an
attempt by a JAVA(™) application running as “user 1”
to read the file may be denied.

Each application running in the environment of FIG. 2
may also have its own security management policies—for
example, a set of JAVA(™) sandbox policies.

10

15

20

25

30

35

40

45

50

55

60

65

6

Part of the base class overlays 200 involves the separation
of certain resources that are not effectively shared between
different programs. For example, the standard java.lang.sys-
tem class uses static variables to define the input, output and
errors streams. As a result, it is not possible to share that
class without modification of the base classes. In this
instance, the base class can be overlaid with modifications
that can use two possible processes—possibly in conjunc-
tion with one another—to determine the current application
and provide appropriate access to the shared base class.

One process used by overlaid, or shared, classes to
identify the correct application is to identify the class loader
for the calling thread. If the class loader is an instance of the
dynamically generated multiple application class loader,
then it together with the namespace can be used to identify
the application. Consequently, the correct resource permis-
sions, list of accessible files, input and output devices, etc.,
are identified for use by the shared class.

The above approach may fail if the class loader for the
object accessing the overlaid class is the primordial class
loader 104. In that instance, the associated namespace may
not provide adequate information to suitably identify the
application and needed information.

Therefore, a second approach to determining the calling
process can be used. In this case, the thread data structures
within the JVM 100 can be examined to determine the
calling object’s thread. Then, the group for the thread can be
identified. Information associated with the thread group
about the application and its properties can then be identi-
fied. If necessary, the thread group hierarchy can be recur-
sively examined until a thread group is found that is asso-
ciated with information about the process.

As seen in the execution environment of FIG. 2, the
multiple application class loader 206 does extend the JVM
100 to support application class loaders in addition to the
multiple application class loader 206. In some embodiments,
it is necessary to configure the JVM not check for multiple
class loaders to enable this capability. In other embodiments
this change is not necessary if the JVM itself already
supports hierarchies of class loaders.

The base class overlays 200 may involve adding checks
for resource permissions. For example, the procedures for
reading file must be overlaid to include identification of the
user for the application, as described above, as well as
verification of the user’s rights with respect to that file.
These changes to the base classes may be implemented in
the base class overlays 200, in the security manager 204, or
in a combination of the two.

The terms “program”, or “computer program”, as used in
this application, refers to any sequence of instructions
designed for execution on a computer system. A program
may include a subroutine, a function, a procedure, an object
method, an object implementation, an executable applica-
tion, an applet, a servlet, a source code, an object code,
and/or some other sequence of instructions designed for
execution on a computer system.

The base class overlays 200, the multiple application class
loader 206, and the security manager 204 may be embodied
as one or programs included in one or more computer usable
media such as CD-ROMs, floppy disks, or other media.

Some embodiments of the invention are included in an
electromagnetic wave form. The electromagnetic waveform
comprises information such as base class overlays, a mul-
tiple application class loader, and a security manger for use
in a modified JAVA(™) execution environment. The elec-
tromagnetic waveform may include the multiple application
class loader accessed over a network.

US 6,931,544 B1

7

The foregoing description of various embodiments of the
invention has been presented for purposes of illustration and
description. It is not intended to limit the invention to the
precise forms disclosed. Many modifications and equivalent
arrangements will be apparent.

What is claimed is:

1. A modified transportable byte code execution environ-
ment comprising:

a substantially unmodified transportable byte code virtual

machine;
a set of substantially unmodified base classes;
one or more overlays to the set of substantially unmodi-
fied base classes, the one or more overlays enabling
corresponding base classes to support shared access by
one or more substantially unmodified transportable
byte code applications;
an unmodified primordial class loader for loading the
system base classes as overlaid by the one or more
overlays to the base classes;
a security manager supporting multiple applications and
for limiting access to system resources according to
user permissions; and
a dynamic class loader generator for creating a class
loader for loading an application, the application
classes and creating a thread group for the application;
wherein in response to an object of a first application
requesting a resource of a shared base class, the one or
more overlays are configured to identify properties of
the first application by:
identifying a first class loader that loaded the object;
if the object was loaded by a first class loader that was
created for the application, using information in the
first class loader and its associated namespace to
identify the properties of the first application; and

if the object was loaded by the primordial class loader,
identifying a first thread group created for the first
application and using information associated with
the first thread group to identify the properties of the
first application.

2. The modified transportable byte code execution envi-
ronment of claim 1, wherein the application includes at least
one of an application class loader and an application security
manager.

3. The modified transportable byte code execution envi-
ronment of claim 1, wherein the one or more overlays
include overlays to file classes to limit access to system
resources according to user permissions associated with the
application.

4. The modified transportable byte code execution envi-
ronment of claim 1, wherein the application includes one or
more invocations of Abstract Window Toolkit (AWT)
classes.

5. The modified transportable byte code execution envi-
ronment of claim 1, wherein the one or more overlays
support determining a calling application.

6. The modified transportable byte code execution envi-
ronment of claim 5, wherein the determining a calling
application comprises identifying the class loader of a
calling method, and using the class loader to identify the
application.

7. The modified transportable byte code execution envi-
ronment of claim 5, wherein the determining a calling
application comprises identifying the thread group for a
calling method, and using the thread group to identify the
application.

8. A method of supporting a number of applications in a
single transportable byte code execution environment, the
method comprising:

10

20

25

30

35

40

45

50

55

60

65

8

generating a class loader for each of the applications in the
number of applications, the class loader providing a
name space for each application, and a thread group for
each application;

overlaying one or more substantially unmodified base
classes to support the number of applications;

determining a calling application for a method; and

limiting access by the number of applications to system
resources according to user permissions; and

in response to an object of a first application requesting a
resource of a shared base class:
identifying a first class loader that loaded the object;
if the object was loaded by a first class loader that was

created for the application, using information in the
first class loader and its associated namespace to
identify properties of the first application; and

if the object was loaded by the primordial class loader,
identifying a first thread group created for the first
application and using information associated with
the first thread group to identify the properties of the
first application.

9. The method of claim 8, wherein at least one of the

number of applications includes an application class loader.

10. The method of claim 8, wherein at least one of the

number of applications includes an application security
manager.

11. A computer data signal embodied in a carrier wave

comprising:
a computer program for supporting a number of substan-
tially unmodified transportable byte code applications
on a substantially unmodified transportable byte code
virtual machine, the transportable byte code virtual
machine including a set of substantially unmodified
base classes and a substantially unmodified primordial
class loader, the program comprising:
a first set of instructions for generating a class loader
for each of the transportable byte code applications
in the number of substantially unmodified transport-
able byte code applications, the class loader provid-
ing a name space for each application, and a thread
group for each application, the first set of instruc-
tions further associating a user with each application;
a second set of instructions for overlaying one or more
substantially unmodified base classes to support the
number of applications;
a third set of instructions for determining a calling
application for a method; and
a fourth set of instructions for limiting access to a
system resource by an application according to
whether the user associated with the application has
access to the system resource, wherein the applica-
tion also has its own security management policies;
and
a fifth set of instructions for, in response to an object of
a first application requesting a resource of a shared
base class:
identifying a first class loader that loaded the object;
if the object was loaded by a first class loader that
was created for the application, using information
in the first class loader and its associated
namespace to identify properties of the first appli-
cation; and

if the object was loaded by the primordial class
loader, identifying a first thread group created for
the first application and using information associ-
ated with the first thread group to identify the
properties of the first application.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,931,544 Bl Page 1 of 1
DATED : August 16, 2005
INVENTOR(S) : Jurgen Kienhofer et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 1
Line 49, please replace “riot” with -- not --.

Signed and Sealed this

Twenty-seventh Day of December, 2005

o W D

JON W. DUDAS
Director of the United States Patent and Trademark Office

