Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 1 of 20

EXHIBIT J

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 2 of 2@

Defendant's
Exhibit

72

Extending the Chicago Shell

Kyle Marsh
Microsoft Developer Network Technology Group

Created: May 10, 1994

Abstract

Applications can extend the shell for the next version of the Microsoft® Windows™ operating
system (code-named Chicago) in a number of ways. Shell extensions enhance the basic
functionality of the shell—they give users choices for manipulating file objects or provide
additional information. Extending the shell allows applications to simplify the task of browsing
through the Chicago file system and networks. Shell extensions also give users easier access
to tools for manipulating objects in the file system. This article explains how an application
creates shell extensions and how Chicago interacts with these extensions.

Introduction

In the next version of the Microsoft® Windows™ operating system (code-named Chicago),
applications can extend the shell in a number of ways. Extending the shell allows applications
to simplify the task of browsing through the file system and networks. Shell extensions also
give users easier access to tools that manipulate objects they find in the file system. For
example, a shell extension can assign an icon to each file or add specific commands for the
file. These commands are added to the context menu the shell displays for the file (when the
user clicks the object with the right mouse button) and to the File menu (when the user selects
the object with the left mouse button and opens the File menu).

Another type of shell extension is a name-space browser, which allows users to browse the
contents of objects using the shell's familiar explorer view. | will be discussing name-space
browsers in detail in a future article.

This article explains how an application creates shell extensions and how Chicago interacts
with these extensions. The design of Chicago's shell extensions is based on the Component
Object Model in object linking and embedding (OLE) version 2.0. The shell accesses objects
via interfaces, and applications implement those interfaces as shell extension dynamic-link
libraries (DLLs), which are similar to the In-Proc Server DLLs in OLE 2.0. Because the new 32-
bit OLE to be included in Chicago was not available to the Chicago shell team early enough to
use in the first beta, the beta shell does not use OLE to load shell extensions. However, since
it uses the same mechanism that OLE uses when it loads In-Proc servers, shell extensions will
continue to work when the shell starts using OLE to load shell extensions.

Please note that this article is based on preliminary information that is subject to change
before the final version of Chicago.

Definitions

msdn_shellext

NOV-B03687517
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 3 of 20

File Object
An item within the shell. The most familiar file objects are files and directories.
However, a file object may not actually be a part of the file system—it may only
appear that way. For example, printers, Control Panel applets, network workgroups,
servers, and shares are all considered file objects.

File Class
The file object type. Each file object is a member of a file class. The file class also
refers to the code that "owns" the manipulation of files of that type. For example, text
files and Microsoft Word documents are examples of file classes. Each file class has
specific shell extensions. The shell loads these extensions based on the file class of
the object it is acting on.

Handler
The code that implements a shell extension.

Shell Extensions

Shell extensions enhance the basic functionality of the shell by providing additional choices for
manipulating file objects or additional information. There are five shell extensions:

+ Context-menu handlers: These handlers add items to the context menu for a particular
file object. (The context menu is displayed when the user clicks a file object with the right
mouse button.)

« Drag-drop handlers: These are context-menu handlers that are accessed when a user
drops an object after dragging it to a new location.

« lcon handlers: These handlers usually add instance-specific icons for file objects. They
can also be used to add icons for file classes.

* Property-sheet handlers: These handlers add pages (specific to a file class or file object)
to the property sheet dialog box the shell displays for a file object.

+ Copy-hook handlers: An application can use these handlers to prevent a folder or printer
object from being copied, moved, deleted, or renamed.

Registering a Shell Extension

All shell extensions are registered in the Windows registry. Each handler must register its class
ID under the HKEY_CLASSES_ROOT\CIsid key in the registry. The Clsid key is a DCE RPC
globally unique identifier (GUID) such as {00020810-0000-0000-C000-000000000046} and is
generated with the UUIDGEN tool. Within this key, the handler adds an InProcServer32 key
that gives the location of the handler's DLL. It is best to give the complete path for the handler;
using the complete path keeps the handler independent of the current path and speeds up load
times.

Applications that create and maintain files such as spreadsheets, word-processing
applications, and databases usually register two additional entries in the registry: a file
association entry and a key name.

The file assaociation entry maps a file extension to a program identifier. For example, a word-
processing application might register the following key under HKEY_CLASSES_ROOT:

NOV-B03687518
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 4 of 20

HKEY CLASSES ROOT
.doc=AllordProcessor

The key name (.doc above) specifies the file extension, and the value of the key
(AWordProcessor) denotes the key name that contains the information about the application
that handles that file extension. The value of the key name is the second registry entry made
by an application that handles files. For example:

HKEY CLASSES ROOT

AWordProcessor = A Word Processor
shell = open print preview
open
command = c:\aword\aword.exe %1
print
command = c:\aword\aword.exe 21
printTo
command = c:\aword\aword.exe %1 %2
preview = Pre&view
command = c:\aword\aword.exe /r %1
shellex
ContextMenuHandlers = ExtraMenu

ExtraMenu = {00000000-1111-2222-3333-00000000000001)
PropertySheetHandlers = SummaryInfo
SummaryInfc = {00000000-1111-2222-3333-00000000000002}
IconHandler = {00000000-1111-2222-3333-00000000000003}
DefaultIcon = %1

The commands in the shell section of the registry are added to the context menus of the
documents that are associated with this type. The printTo entry is also used when the user
drops a document on a specific printer. As in Windows 3.1, you can use dynamic data
exchange (DDE) strings in these definitions. To avoid conflicts with other classes, you must
use real GUIDs, not the phony strings | used above.

The new shellex key contains the information the shell uses to associate a shell extension
handler with a file type.

The shell also uses several other special keys—*, Folder, Drives, Printers, and keys for
network providers—under HKEY_CLASSES_ROOT to look for shell extensions.

« The * key can be used to register handlers that the shell will call when it creates a context

menu or property sheet for any and every file object. Thus, if the registry contains the
following:

HKEY CLASSES ROOT
* = *
shellex
ContextMenuHandlers = ExtraMenu
ExtraMenu = {00000000-1111-2222-3333-00000000000001}
PropertySheetHandlers = SummaryInfo

SummaryInfo = {00000000-1111-2222-3333-00000000000002}
the shell uses instances of the ExtraMenu and Summarylnfo handlers to add to the
context menus and property sheets for every file object.

« The shell uses the Folder key to allow applications to register shell extensions for
directories in the file system. An application can register context-menu handlers, copy-
hook handlers, and property-sheet handlers in the same way it registers these handlers for

NOV-B03687519
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 5 of 20

the * key. An additional handler, the drag-drop handler, applies only to the Folder and
Printers keys. For example:

Folder = Folder
shellex
DragDropHandlers = ADDHandler
ADDHandler = {00000000-1111-2222-3333-00000000000004}
CopyHookHandlers = ACopyHandler
ACopyHandler = {00000000-1111-2222-3333-00000000000005}

« The Drives key allows the same registrations as the Folder key, but is called only for root
paths, for example: C:\.

+ The Printers key allows the same registrations as the Folder key, but uses additional
handlers for printer events, deletion or removal of printers (via the copy-hook handler), and
printer properties (with property-sheet handlers and context-menu handlers).

* The shell recognizes context-menu handlers and property-sheet handlers for only one
network provider name: the "Microsoft Network" key.

How the Shell Accesses Shell Extension Handlers

The shell uses two interfaces to initialize instances (objects created by
IClassFactory::Createlnstance) of shell extensions: IShellExtInit and IPersistFile. The shell
uses the IShellExtInit interface to initialize context-menu handlers, drag-drop handlers, and
property-sheet handlers. The shell uses IPersistFile to initialize instances of icon handlers.
This interface is same as the IPersistFile interface in OLE 2.0.

IShellExtlnit

The shell uses this interface to initialize instances of context-menu handlers, drag-drop
handlers, and property-sheet handlers. It adds one method, Initialize, to the standard
IlUnknown interface.

Initialize
Syntax:

STDMETHOD (Initialize (LPCITEMIDLIST pidlFolder,
LPDATAOBJECT lpdobj, HKEY hkeyProgID)

Parameters:

« pidiFolder. A pointer to an ID list that points to either the parent folder of selected objects
(in the case of the context-menu handlers) or the target folder (in the case of drag-drop
handlers).

* Ipdobj: A pointer to the data object for the file object(s). Normally, this is the selected
object in the shell. Handlers should call the object's AddRef method in the IShellExtInit
Initialize method and the object's Release method in the IShellExtInit Release method.

NOV-B03687520
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 6 of 20

* hkeyProglD: Handle to the registry key for the primary object in the shell (usually the
object with the focus). This parameter may be NULL. The handler can call RegOpenKey
with hkeyProgID as the hkey parameter to open the key.

The handler should keep a copy of these parameters if it needs them later. For example:

// Shell Extension Sample's IShellExtInit Interface
/7

STDMETHODTMP SHE ShellExtTnit Tnitialize(LPSHELLEXTINIT psxi,
LPCITEMIDLIST pidlFolder,
LPDATAOBJECT pdtobj, HKEY hkeyProgID)

PSHELLEXTSAMPLE this = PSXI2PSMX (psxi);

// Initialize can be called more than once.
if (this-> pdtobj) {

this—> pdtobj->1pVtbl->Release(this-> pdtobj) ;
}

if (this-> hkeyProgID) {
RegCloseKey (this-> hkeyProgID);
}

// Duplicate the pdtobj pointer, then update the usage count.
if (pdtobj) {

this—-> pdtobj = pdtobj;

pdtobj->1pVtbl->AddRef (pdtobj) ;
}

// Duplicate the registry handle.
if (hkeyProglD) ({

RegOpenKey (hkeyProgID, NULL, &this-> hkeyProgID);
}

return NOERROR;
}

Each shell extension must implement three routines: an entry point (often called DIIMain or
LibMain), DIICanUnloadNow, and DIIGetClassObiject.

The entry point is standard for any 32-bit DLL,; it usually needs to record the handle to the DLL
for future use. The handle must be stored in a per-instance variable. For example:

BOOL APIENTRY LibMain (HANDLE hD11l, DWORD dwReason, LPVOID lpReserved)
{

switch (dwReason)

{

case DLL PROCESS ATTACH:

g_hmodfhilel = hD11; // g_hmodThisDll must be per-instance.
break;
case DLL PROCESS DETACH:
break;
NOV-B03687521

CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 7 of 20

case DLL THREAD DETACH:
break;

case DLL THREAD ATTACH:
default:

break;
} // end switch{)

return TRUE;
}

The DIICanUnloadNow and DIIGetClassObject functions are essentially the same as they
would be for any In-Proc Server DLL in OLE 2.0. DlICanUnloadNow is straightforward:

STDAPI DllCanUnloadNow (void)

{
// g_cRefThisDll must be placed in the per-instance data section.

return ResultFromScode((g cRefThisDll==0) ? S OK : S FALSE);
)

DliGetClassObject needs to expose the class factory for the object in the DLL. For more
information on exposing the class factory, please see the OLE 2.0 Programmer's Reference,
Vol. 1, Chapter 5, "IClassFactory Interface" (Product Documentation, SDKs, OLE 2) or Inside
OLE 2, Chapter 4, "Implementing a Component Object and a Server" (Books and Periodicals)
in the Development Library.

//
// CDhefClassFactory class
/7
extern CDefClassFactory * NEAR PASCAL CDefClassFactory Create(
LPFNCREATEINSTANCE lpfnCI, UINT FAR * pcRefDll, REFIID

riidInst);

/7

// DllGetClassGObject

/7

// This is the entry of this DLL, which all the In-Proc Server DLLs should
// export. See the description of "Dl1GetClassObject"™ in the OLE 2.0

// Programmer's Reference manual for details.

//

STDAPI Dl1GetClassObject (REFCLSID rclsid, REFIID riid, LPVOID FAR* ppvOut)

{
*ppvOut = NULL; // Assume failure

if (IsEqualIID(rclsid, &CL3ID ShellExtSample))
{
if (IsEqualIID(riid, &IID IClassFactory))
|| IsEqualIID(riid, &IID IUnknown))
{

NOV-B03687522
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 8 of 20

ChefClassFactory * pacf = CDefClassFactory Create(
ShellExtSample Createlnstance, B
&g cRefThisDl1l1,
NULL) ;
if (pacft)
{
(IClassFactory FAR *)*ppvOut = &pacf->cf;
return NOERROR;
}

return ResultFromScode (E_OUTOFMEMORY) ;
return ResultFromScode (E NOINTERFACE) ;

else

return ResultFromScode (CLASS E CLAS3SNOTAVATLABLE) ;

IDLists

OLE 2.0 introduced objects call monikers, which were used to identify and bind references to
link sources to the code for reconnection. The Chicago shell provides a similar object called an
itemID. ItemIDs are variable-length byte streams that contain information for identifying a file
object within a folder. An ltemID does not contain non-persistent values such as pointers to
data structures, window handles, or atoms. This is because the shell may store ItemIDs in
persistent storage (that is, on disk) and use them later.

An ItemlID is defined as follows:

typedef struct SHITEMID

{
USHORT cb; // Size of the ItemID

BYTE abID[1]; // The ItemID (variable length)
} SHITEMID, FAR* LPSHITEMID;

typedef const SHITEMID FAR * LPCSHITEMID;

ltemIDs may also contain information that helps improve the efficiency with which you can
manipulate the file object, for example, the file object's display name or sorting information.

The shell does not need to know the actual content of an IltemID. The only part of an ltemID
the shell uses is the first two bytes, which contain the size of the ItemID. The shell does not
look at the rest of the ItemID directly; this information is usable only by the handler that
created the ItemiD.

The shell often concatenates IltemIDs and adds a NULL terminator at the end, creating an
IDList. An IDList that contains only one ItemlID is called a simple IDList, and an IDList that
contains multiple ItemlIDs is called a complex IDList. For consistency, the shell always passes
a pointer to an IDList even when the receiving handler can only use a single ltemID. IDLists
are defined as follows:

typedef struct ITEMIDLIST // idl

{
SHITEMID mkid;

NOV-B03687523
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 9 of 20

} ITEMIDLIST, FAR* LPITEMIDLIST;

typedef const ITEMIDLIST FAR* LPCITEMIDLIST;

Context-Menu Handlers

An application implements a context-menu handler interface, IContextMenu, to add menu
items to the drop-down menu the shell displays when the user clicks a file object with the right
mouse button. This has the effect of dynamically adding verbs for this file type. The additional
menu items can be either class-specific (that is, applicable to all files of a particular type) or
instance-specific (that is, applicable to an individual file).

The purpose of a context-menu handler is to add menu items to a menu—not to delete or
change items that are already there. Although context-menu handlers can change or remove
existing items (because they are passed a handle to a menu that contains the items), they
should not be used for that purpose because other handlers may add items before or after a
particular handler gets the context-menu handle, and the shell adds items to the menu after all
context-menu handlers have been called.

Context-menu handlers are entered in the registry under the shellex key within an application's
information area. The ContextMenuHandlers key lists the names of subkeys that contain the
Clsid of each context-menu handler, for example:

ContextMenuHandlers = ExtraMenu
ExtraMenu = {00000000-1111-2222-3333-00000000000001}

You can register multiple context-menu handlers for a file type. In this case, the order of the
subkey names in the ContextMenuHandlers key determines the order of the context menu's
items.

In addition to the usual IlUnknown methods, the context-menu handler interface uses three
methods:

* QueryContextMenu
*+ InvokeCommand

+ GetCommandString

When the user selects one of these dynamic verbs, the shell calls the
IContextMenu::InvokeCommand member to let it process the command. If you register
multiple context-menu handlers for a file type, the value of the ContextMenuHandlers key will
determine the order of the commands.

QueryContextMenu

Windows calls the QueryContextMenu method when it is about to display a context menu for
a file. Context-menu handlers insert menu items by position (MF_POSITION) directly into the
drop-down menu by calling InsertMenu. Menu items must be string items (MF_STRING). As a
result, the fuFlags parameter to InsertMenu must be MF_POSITION | MF_STRING for each
menu item the context-menu handler inserts.

Syntax:

NOV-B03687524
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 10 of 20

QueryContextMenu (HMENU hMenu,
UINT indexMenu,
UINT idCmdFirst,
UINT idCmdLast,
INT uFlags)

Parameters:

* hMenu: The handle to the drop-down menu. This value should be passed as the hmenu
parameter to InsertMenu.

+ indexMenu: The index to the menu item before which the first menu item should be
inserted. Normally, the context-menu handler passes this value to InsertMenu as the
idltem parameter and increments this value each time it calls InsertMenu. This parameter
will never be —1.

« idCmdFirst. The first menu-item identifier that the context-menu handler should use by
passing the value to InsertMenu as the idNewitern parameter. For each subsequent menu
item, the context-menu handler should increment the value before passing it to
InsertMenu.

+ jdCmdLast: The last menu-item identifier that can be used in this menu. Context-menu
handlers must make sure they do not use a menu-item identifier with a value higher than
this value.

*« uFlags:

+ CMF_DEFAULTONLY: Chicago sends this flag if the users double-clicks a file with the
right mouse button. Context-menu handlers should avoid adding non-default menu
items to the context menu when this flag is present.

+ CMF_VERBSONLY: Context-menu handlers should ignore this flag.
Example:

STDMETHODIMP SHE_ContextMenu_QueryContextMenu(LPCONTEXTMENU pctm,
HMENU hmenu,
UINT indexMenu,
UINT idCmdFirst,
UINT idCmdLast,
UINT uFlags)

UINT idCmd = i1dCmdFirst;

if (idCmdFirst+2 > idCmdLast)
return ResultFromScode (E_FAIL) ;

InsertMenu (hmenu, indexMenu++, MF STRING|MF BYPOSITION,
idCmd++, "Check H&DROP (menuext)");
InsertMenu (hmenu, indexMenu++, MF STRING|MF BYPOSITION,
idCmd++, "Check H&NRES (menuext)"):;
return ResultFromScode (MAKE SCODE (SEVERITY SUCCESS,
FACILITY NULL, (USHORT) 2)) ;

InvokeCommand

NOV-B03687525
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 11 of 20

Windows calls the InvokeCommand method when the user selects a menu item that the
context-menu handler added to the context menu.

Syntax:

InvokeCommand (HWND hwndParent,
LPCSTR pszWorkingDir,
LPCSTR pszCmd,

LPCSTR pszParam,
int iShowCmd) ;

Parameters:

+ hwndParent. The window that owned the context menu. This can be the desktop, the file
cabinet, or the tray. The context menu handler can use this handle as the owner window of
dialog boxes or message boxes that the handler may display from within this method.

« pszWorkingDir: This parameter is NULL for menu items inserted by a context-menu
handler. Context-menu handlers should ignore this parameter.

« pszCmd: This is a pointer to the command that the user selected. If the HIWORD of
pszCmd is 0, the LOWORD contains the offset from the idCmdFirst parameter sent
previously to QueryGetContextMenu. (Thus, pszCmd would be 0 for the first menu item
the handler added, 1 for the next menu item, and so on.) If the HIWORD of pszCmd is not
0, pszCmd points to a language-independent command string that could be used to
execute the command. Currently, the shell does not use the command strings.

* pszParam: This parameter is NULL for menu items inserted by a context-menu handler.
Context-menu handlers should ignore this parameter.

« [ShowCmd: This parameter is 0 for menu items inserted by a context-menu handler.
Context-menu handlers should ignore this parameter.

Example:

STDMETHODIMP 3HE ContextMenu InvokeCommand (LPCONTEXTMENU pctm,
HWND hwnd,
LPCSTR pszWorkingDir,
LPCSTR pszCmd,
LPCSTR pszParam,
int iShowCmd)

PSHELLEXTSAMPLE this = PCTM2PSMX (pctm) ;
HRESULT hres = ResultFromScode (E INVALIDARG) ; // assume error
//
// No need to support string-based command.
//
if (!HIWORD (pszCmd)j)
{
UINT idCmd = LOWORD (pszCmd) ;

switch (1idCmd)
{

case O0O:

hres = DoHDROPCommand (hwnd, pszWorkingDir, pszCmd, pszParam,
iShowCmd) ;

break;

case 1:

NOV-B03687526
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 12 of 20

hres = DoHNRESCommand (hwnd, pszWorkingDir, pszCmd, pszParam,
iShowCmd) ;
break;
}
}

return hres;

GetCommandString

Windows calls the GetCommandString method to get a language-independent command
string or the help text for a context menu item.

Syntax:

GetCommandString (UINT idCmd,
UINT uFlags,
UINT FAR * pwReserved,
LPSTR pszName,
UINT cchMax)

Parameters:

« idCmd: The item identifier of the context menu item.

* uFlags: If this parameter is zero, the handler should return the language-independent
command string for the menu item. If the parameter is GCS_HELPTEXT, the handler
should return the menu item's help string, which the shell will display in its status bar.

+ pwReserved: This parameter is reserved.
« pszName: A pointer to a string to which the method should copy the command string.

+ cchMax: The maximum number of characters that pszName can contain.

Drag-Drop Handlers

Drag-drop handlers implement the IContextMenu interface. In fact, a drag-drop handler is
simply a context-menu handler that affects the menu the shell displays when a user drags and
drops a file object with the right mouse button. Since this menu is called the drag-drop menu,
shell extensions that add items to this menu are called drag-drop handlers. Drag-drop handlers
work in the same way as context-menu handlers.

Icon Handlers

The Chicago shell allows an application to customize the icon that the shell displays for the
application's file types. Figure 1 shows the shell's standard icons.

NOV-B03687527
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 13 of 20

Priv.h Samp2.she

Shesgamp.c Shesamp.def Shesamph Shesamprc Shesamproy

Figure 1. Standard icons

Figure 2 shows the customized icons supplied by an icon handler.

& SHESamp

Shesamp.c

| Shesamp.def Shesamph Shesamprc Shesamporov Shezamp

Figure 2. Icons supplied by an icon handler

The shell also uses the icon interface to allow applications to specify icons for folders and
subfolders within an application's file structure. (This subject will be covered in a separate
article.)

An application can specify icons for its file types in two ways. The first, and simplest, way is to
specify a class icon to be used for all files of that file type. To specify a class icon, the
application adds a Defaulticon key to the registry under the program information. The value of
this key specifies the executable (or DLL) that contains the icon, and the index of the icon with
the file. For example:

DefaultIcon = c:\Mydir\Myapp.exe,l

NOV-B03687528
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 14 of 20

This is identical to the way Windows 3.1 handles default icons. One of the advantages of using
a class icon is that it requires no programming; the shell handles displaying the icon for the
class.

Chicago adds a new value, %1, for the Defaulticon key. This value denotes that each file
instance of this type can have a different icon. The application must supply an icon handler for
the file type and add another entry, lconHandler, to the sheilex key for the application. An
application can have only one lconHandler entry. The value of the lconHandler key denotes
the Clsid of the icon handler, for example:

shellex
TconHandler

= {00000000-1111-2222-3333-00000000000003}
DefaultlIcon = %1

To have customized icons, an application must supply an extract icon handler that implements
the IExtractlicon interface. When Chicago is about to display an icon for a file type that has
instance-specific icons, it does the following:

1. Gets the Clsid of the handler.

2. Creates an IClassFactory object by calling the DIIGetClasObject entry of the specified
DLL.

3. Calls IClassFactory::Createlnstance with IID_IPersistFile to create its instance.
4. Initializes the instance by calling the IPersistFile:Load method.

5. Uses the Queryinterface method to get to the IExtracticon interface.

6

Calls the interface's GetlconLocation Extracticon method.

The IExtractlicon interface has two methods in addition to the usual lUnknown methods:
+ GetlconlLocation

+ Extracticon

GetlconLocation

Chicago calls the GetlconLocation method to get the location of an icon to display. Normally,
the icon location is an executable or DLL filename, but it can be any file.

Syntax:

GetIconLocation (UINT uFlags,
LPSTR szIconFile,
UINT cchMax,
int FAR * pilIndex,
UINT FAR * pwFlags)

Parameters:

* UFlags: If the object is a folder, Chicago sends the GIL_OPENICON flag to specify an
open folder icon that appears in the left pane of the explorer. If GIL_OPENICON isn't
specified, the icon handler should return the closed version of a folder icon by default. An
icon handler for non-folder objects should ignore this parameter.

NOV-B03687529
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 15 of 20

« szlconFile: A pointer to a string that contains the fully qualified name of the file that
contains the icon. lcon handlers copy the filename to this string.

« cchMax: The maximum number of characters available in sz/iconFile. Icon handlers must
make sure not to put more than cchMax characters in szlconFile.

« pilndex: If the value is positive, this parameter points to an integer that contains the index
to the icon in the file. If the value is negative, the parameter points to the resource ID for
an icon. Icon handlers must put the index for the icon in the integer that this parameter
points to.

*+ pwFlags:

GIL_SIMULATEDOC: Use the document icon for this file type.

GIL_PERINSTANCE: lcons for this file type are per instance (that is, different files of

this type have different icons).

GIL_PERCLASS: Icons for this file type are per class (that is, icons are the same for

all files of this type).

Example:

// First store the filename obtained in IPersistFile's Load method.

/7
/7

STDMETHODIMP SHE PersistFile Load(LPPERSISTFILE pPersistFile,

/7
//
/7
/7

LPCOLESTR lpszFileName,
DWORD grfMode)

// Get a pointer to my class
PSHELLEXTSAMPLE this = PPSF2PSMX (pPersistFile);

int iRet = WideCharToMultiByte (

CP_ACP, // CodePage
WC_SEPCHARS, // dwFlags

lpszFileName, // lpWideCharStr

-1, // cchWideChar
this-> szFile, // 1lpMultiByteStr
sizeof (this-> szFile), // cchMultiByte,
NULL, // lpDhefaultChar,
NULL // lpUsedDefaultChar

)

// Copy the filename to my holder.
if (iRet==0)
{
LPSTR psz=this-> szFile;
while (*psz++ = (char)*lpszFileName++) ;
}

return NOERROR;

Now tell the shell where to get the icon.

This sample reads the file to get the location.

STDMETHODIMP SHE_ExtractIcon_GetIconLocation(LPEXTRACTICON

pexic,

NOV-B03687530
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 16 of 20

UINT uFlags,
LPSTR szIconFile,
UINT cchMax,
int FAR * pilIndex,
UINT FAR * pwFlags)

PSHELLEXTSAMPLE this = PEXIZPSMX (pexic);
if (this-> szFile[O0])
{
GetPrivateProfileString("IconImage", "FileName",
"shell32.d1l1",szIconFile, cchMax, this-> szFile);
*pilndex = (int)GetPrivateProfilelInt("Iconlmage", "Index",
0, this-> szFile);
}
else
{
lstrcpy(szlconFile, "shell32.d11");

*piIndex = -10;
}
*pwFlags = 0;

return NOERROR;

Extractlcon

Chicago calls the Extractlcon method when it needs to display an icon for a file that does not
reside in an executable or DLL. Applications usually have the file icons in their executables or
DLLs, so icon handlers can simply implement this method as a return-only function that returns
E_FAIL. When the icon for a file is in a separate .ICO file (or any other type of file), the icon
handler must extract the icon for the shell and return it in this method.

Syntax:

ExtractIcon(LPCSTR pszFile,
UINT nIconIndex,
HICON FAR *phiconlarge,
HICON FAR *phiconSmall,
UINT nIcons)

Parameters:

« pszFile: The filename that contains the icon. This value was set in the GetlconLocation
method.

* pnleconindex: The index to the icon in the file. This value was set in the GetlconLocation
method.

« phiconLarge: A pointer to an icon handle. The icon handler sets the handle to the large
icon for this item.

« phiconSmall: A pointer to an icon handle. The icon handler sets the handle to the small
icon for this item.

* nlcons: The number of icons (large or small) the shell is requesting. This value is always 1
for current implementations of Chicago.

NOV-B03687531
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 17 of 20

Property-Sheet Handlers

Another way the shell can be extended is via custom property sheets. When the user selects
the properties for a file, the shell displays a standard property sheet (currently, the General
property sheet illustrated in Figure 3).

Figure 3. The standard property sheet

If the registered file type has a property-sheet handler, the shell will allow the user to access
the additional sheets the handler provides (Figure 4). Property-sheet handlers implement the
IShellPropSheetExt interface.

NOV-B03687532
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 18 of 20

+ Properties Sample

Added by a shell
extension

EvlehdazaahShesamphSHES amphS ample. sl

Figure 4. A property sheet page added by a shell extension

Property-sheet handlers are entered in the registry under the shellex key, within an
application's information area. The PropertySheetHandlers key lists the names of subkeys that
contain the Clsid of each context-menu handler. For example:

PropertySheetHandlers = SummaryInfo
SummaryInfo = {00000000-1111-2222-3333-00000000000002}

You can register multiple property-sheet handlers for a file type. In this case, the order of the
subkey names in the PropertrySheetHandlers key determines the order of the additional
property sheets. You can use a maximum of 24 (MAXPROPPAGES) property-sheet pages.

The property-sheet handler uses the AddPages method in addition to the usual IlUnknown
methods.

AddPages

Chicago calls the AddPages method when it is about to display a property sheet. Chicago calls
each property-sheet handler registered to the file type to allow the handlers to add pages to the
property sheets.

Syntax:
AddPages (LPFNADDPROPSHEETPAGE lpfnAddPage, LPARAM lParam)

typedef BOOL (CALLBACK FAR * LPFNADDPROPSHEETPAGE) (HPROPSHEETPAGE, LPARAM) ;

Parameters:

NOV-B03687533
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 19 of 20

+ pmAddPage: Points to the function the property-sheet handler calls to add a page to the
property sheet. This function takes a property-sheet handle and an /Param as parameters.

» [Param: The property-sheet handler passes this argument to the IpfnAddPage function as
its IParam parameter.

Example:

For each page it wants to add to the property sheet, a property-sheet handler does the
following:

* Fillsin a PROPSHEETPAGE structure.
« Calls CreatePropSheetPage.

« Calls IpfnAddPage with the handle returned from CreatePropSheetPage and the /Param
passed in from the shell.

STDMETHODIMP CSamplePageExt::AddPages (LPFNADDPROPSHEETPAGE lpfnAddPage,
LPARAM lParam)
{
PROPSHEETPAGE psp;
HPROPSHEETPAGE hpage;

sizeof (psp); // no extra data.
PSP_USEREFPARENT | PSP _USERELEASEFUNC;
(HINSTANCE) g_hmodThisD11;
MAKEINTRESOURCE (DLG_FSPAGE) ;

FSPage DlgProc;

&g _cRefThisDll;

FSPage ReleasePage;

(LPARAM) hdrop;

psp.dwSize
psp.dwFlags
psp.-hInstance
psp.pszTemplate
psp.pfnDlgProc
psp.pcRefParent
psp.pfnRelease
psp.lParam

hpage = CreatePropertySheetPage (&psp):;
if (hpage) {
if (!lpfnAddPage (hpage, lParam))
DestroyPropertySheetPage (hpage) ;
}

return NOERROR;

Copy-Hook Handlers

An application can register a copy-hook handler that the shell will call before the shell moves,
copies, deletes, or renames a folder object. The copy-hook handler does not perform the task
itself, but provides approval for the task. \When the shell receives approval from the copy-hook
handler, it performs the actual file system operation (move, copy, delete, or rename). Copy-
hook handlers are not informed about the success of the operation, so they cannot monitor
actions that occur to folder objects.

The shell initializes the copy-hook handler interface directly, that is, without using an
IShellExtInit or IPersistFile interface first. A folder object can have multiple copy-hook
handlers. The copy-hook handler interface has one method, CopyCalilBack, in addition to the
standard lUnknown methods.

NOV-B03687534
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 299-10 Filed 11/17/11 Page 20 of 20

CopyCaliBack

The shell calls the CopyCallBack method before it copies, moves, renames, or deletes a
folder object. The method returns an integer value that indicates whether the shell should
perform the operation. The shell will call each copy-hook handler registered for a folder object
until either all the handlers have been called, or any handler returns IDCANCEL. The handler
can also return IDYES to specify that the operation should be carried out, or IDNO to specify
that the operation should not be performed.

Syntax:

CopyCallback (HWND hwnd, WORD wFunc, WORD wFlags, LPCSTR pszSrcFile, DWORD
dwSrcAttribs, LPCSTR pszDestFile, DWORD dwDestAttribs);

Parameters:

« hwnd: Either the dialog to use as the progress dialog, or the parent from which to create
the progress dialog, if FOF_CREATEPROGRESSDLG is set.

* wFunc: Operation to be performed:
+ FO_DELETE: Delete files in pszSrcFile.
+ FO_RENAME: Rename files in pszSrcFile.
+ FO_MOVE: Move files in pszSrcFile to pszDestFile.
+ FO_COPY: Copy files in pszSrcFile to pszDestFile.
* wFlags: Flags that control the operation:

+ FOF_RENAMEONCOLLISION: In a move/copy/rename operation, if a file of the target
name already exists, give the file being operated on a new name (such as "Copy #1 of

Y

+ FOF_NOCONFIRMATION: Respond "yes to all" for any dialog box that might be
displayed.

* pszSrcFile: Pointer to a string containing the source filename.
« dwSrcAlttribs: Attributes of the source file.
« pszDestFile: Pointer to a string containing the destination filename.

« dwDestAftribs: Attributes of the destination file.

Summary

The shell extensions described in this article allow applications to facilitate the task of
navigating within a system or network. In some cases, however, applications may want to
extend the shell further with a name-space browser. Name-space browsers allow applications
to expose the hierarchical structure of objects through the Chicago shell. A good example of a
name-space browser is a file that displays the hierarchy of the user's mail folder. In my next
article, | will be discussing name-space browsers in detail. Stay tuned.

NOV-B03687535
CONFIDENTIAL

