

EXHIBIT 2

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page1 of 21

pa-1455336 1 of 29 April 1, 2011

EXHIBIT C
Supplemental Infringement Contentions for the ’702 Patent

NOTE: The infringement evidence cited below is exemplary and not exhaustive. The cited examples are taken from Android 2.2,
2.3, and Google’s Android websites. Oracle’s infringement contentions apply to all versions of Android having similar or nearly
identical code or documentation, including past and expected future releases. Although Oracle’s investigation is ongoing, the ’702
patent is infringed by all versions of Android from Oct. 21, 2008 to the present, including Android 1.1, 1.5 (“Cupcake”), 1.6
(“Donut”), 2.0/2.1 (“Éclair”), 2.2 (“Froyo”), and 2.3 (“Gingerbread”).

The cited source code examples are taken from http://android.git.kernel.org/. The citations are shortened and mirror the file paths
shown in http://android.git.kernel.org/. For example, “dalvik\vm\native\InternalNative.c” maps to “[platform/dalvik.git] / vm / native
/ InternalNative.c” (accessible at http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/native/InternalNative.c). Google
has apparently made modifications to certain source code files and directories since Oracle’s Preliminary Infringement Contentions
were served on December 2, 2010. As such, file paths may in some cases refer to earlier versions of Android than what is
immediately available at http://android.git.kernel.org/.

It appears that the Android git source code repository (accessible through http://android.git.kernel.org/) was created on or around
Oct. 21, 2008. As such, the list of infringing Android versions may be expanded based on what Oracle learns about earlier Android
versions.

The asserted claims include apparatus, method, and computer-readable medium claims. Anyone who makes, uses, offers to sell, sells,
or imports the computers running the Android SDK within or into the United States directly infringes the apparatus claims. Similarly,
anyone who engages in the above conduct with respect to storage devices containing the Android SDK directly infringes the
computer-readable medium claims. Anyone who uses the Android SDK directly infringes the method claims. Thus Google and its
downstream licensees, including device manufacturers and application developers, directly infringe. Google induces and contributes
to infringement of all asserted claims by distributing the Android SDK with the intention that it will be executed by developers. The
Android code cited below necessarily infringes because developers must run the Android dx tool to build Android applications, and
generate Android bytecode and .dex files, and run the Dalvik virtual machine to test them. The Android SDK is a tool used purely to
build and test Android programs. It is neither a staple article nor capable of substantial non-infringing use. Google supplies the
Android SDK in and from the United States.

When infringement evidence first presented with respect to one claim is referred to with respect to another, the evidence is applicable
because it is not limited to a particular form of infringement.

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page2 of 21

pa-1455336 2 of 29 April 1, 2011

The ’702 Patent Infringed By

1. A method of pre-processing class
files comprising:

The Android dx tool involves a method of pre-processing .class files into a Dalvik executable
format (.dex) file.

“dx

The dx tool lets you generate Android bytecode from .class files. The tool converts
target files and/or directories to Dalvik executable format (.dex) files, so that they can
run in the Android environment.”

Android Developer Tools available at
http://developer.android.com/guide/developing/tools/othertools.html

The method of pre-processing class files into a .dex file that can be interpreted by the Dalvik
Virtual Machine (Dalvik VM) is explained in the Dalvik VM video presentation and related
presentation from Google I/O 2008, dated 5/29/2008.

See Google I/O 2008 Video entitled “Google I/O 2008 - Dalvik Virtual Machine Internals,”
presented by Dan Bornstein,
http://developer.android.com/videos/index.html#v=ptjedOZEXPM (“Dalvik Video”), at time
5:45–10:45.

See also Google I/O 2008 Presentation Slides, entitled, “Dalvik Virtual Machine Internals,
Google I/O 2008,” presented by Dan Bornstein (“Dalvik Presentation”) at slides 11-22,
available at http://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-
Dalvik-VM-Internals.pdf?attredirects=0.

In the Android source code, see generally:

“Classes for translating Java classfiles into Dalvik classes.
PACKAGES USED:
• com.android.dx.cf.code

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page3 of 21

pa-1455336 3 of 29 April 1, 2011

The ’702 Patent Infringed By
• com.android.dx.cf.direct
• com.android.dx.cf.iface
• com.android.dx.dex.code
• com.android.dx.dex.file
• com.android.dx.rop.code
• com.android.dx.rop.cst
• com.android.dx.util”

dalvik\dx\src\com\android\dx\dex\cf\package.html.

determining plurality of duplicated
elements in a plurality of class files;

The Android dx tool determines a plurality of duplicated elements in a plurality of class files,
as explained in the Dalvik Video at time 7:50-8:45 and Dalvik Presentation, slides 18-19.

The Dalvik Presentation shows the determination of a plurality of duplicated elements (e.g.,
class signatures and string names) in a plurality of class files:

(Dalvik Presentation, slide 18)

(Shows identification of common class signatures in the class files)

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page4 of 21

pa-1455336 4 of 29 April 1, 2011

The ’702 Patent Infringed By

(Dalvik Presentation, slide 19)

(Shows identification of common string names in the class files)

In the Android source code, see also generally:

“Interfaces and implementation of things related to the constant pool.
PACKAGES USED:
 * com.android.dx.rop.type

* com.android.dx.util”

dalvik/dx/src/com/android/dx/rop/cst/package.html.

See also DexFile.java:

440
 441 /**
 442 * Gets the {@link IndexedItem} corresponding to the given constant,
 443 * if it is a constant that has such a correspondence, or return

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page5 of 21

pa-1455336 5 of 29 April 1, 2011

The ’702 Patent Infringed By
 444 * {@code null} if it isn't such a constant. This will throw
 445 * an exception if the given constant <i>should</i> have been found
 446 * but wasn't.
 447 *
 448 * @param cst {@code non-null;} the constant to look up
 449 * @return {@code null-ok;} its corresponding item, if it has a
corresponding
 450 * item, or {@code null} if it's not that sort of constant
 451 */
 452 /*package*/ IndexedItem findItemOrNull(Constant cst) {
 453 IndexedItem item;
 454
 455 if (cst instanceof CstString) {
 456 return stringIds.get(cst);
 457 } else if (cst instanceof CstType) {
 458 return typeIds.get(cst);
 459 } else if (cst instanceof CstBaseMethodRef) {
 460 return methodIds.get(cst);
 461 } else if (cst instanceof CstFieldRef) {
 462 return fieldIds.get(cst);
 463 } else {
 464 return null;
 465 }
 466 }
 467
 468 /**
 469 * Returns the contents of this instance as a {@code .dex} file,
 470 * in a {@link ByteArrayAnnotatedOutput} instance.
 471 *
 472 * @param annotate whether or not to keep annotations
 473 * @param verbose if annotating, whether to be verbose
 474 * @return {@code non-null;} a {@code .dex} file for this instance
 475 */
 476 private ByteArrayAnnotatedOutput toDex0(boolean annotate,
 477 boolean verbose) {
 478 /*
 479 * The following is ordered so that the prepare() calls which
 480 * add items happen before the calls to the sections that get
 481 * added to.
 482 */
 483
 484 classDefs.prepare();
 485 classData.prepare();
 486 wordData.prepare();

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page6 of 21

pa-1455336 6 of 29 April 1, 2011

The ’702 Patent Infringed By
 487 byteData.prepare();
 488 methodIds.prepare();
 489 fieldIds.prepare();
 490 protoIds.prepare();
 491 typeLists.prepare();
 492 typeIds.prepare();
 493 stringIds.prepare();
 494 stringData.prepare();
 495 header.prepare();
 496
 497 // Place the sections within the file.
 498
 499 int count = sections.length;
 500 int offset = 0;
 501
 502 for (int i = 0; i < count; i++) {
 503 Section one = sections[i];
 504 int placedAt = one.setFileOffset(offset);
 505 if (placedAt < offset) {
 506 throw new RuntimeException("bogus placement for section " +
i);
 507 }
 508
 509 try {
 510 if (one == map) {
 511 /*
 512 * Inform the map of all the sections, and add it
 513 * to the file. This can only be done after all
 514 * the other items have been sorted and placed.
 515 */
 516 MapItem.addMap(sections, map);
 517 map.prepare();
 518 }
 519
 520 if (one instanceof MixedItemSection) {
 521 /*
 522 * Place the items of a MixedItemSection that just
 523 * got placed.
 524 */
 525 ((MixedItemSection) one).placeItems();
 526 }
 527
 528 offset = placedAt + one.writeSize();
 529 } catch (RuntimeException ex) {

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page7 of 21

pa-1455336 7 of 29 April 1, 2011

The ’702 Patent Infringed By
 530 throw ExceptionWithContext.withContext(ex,
 531 "...while writing section " + i);
 532 }
 533 }
 534
 535 // Write out all the sections.
 536
 537 fileSize = offset;
 538 byte[] barr = new byte[fileSize];
 539 ByteArrayAnnotatedOutput out = new ByteArrayAnnotatedOutput(barr);
 540
 541 if (annotate) {
 542 out.enableAnnotations(dumpWidth, verbose);
 543 }
 544
 545 for (int i = 0; i < count; i++) {
 546 try {
 547 Section one = sections[i];
 548 int zeroCount = one.getFileOffset() - out.getCursor();
 549 if (zeroCount < 0) {
 550 throw new ExceptionWithContext("excess write of " +
 551 (-zeroCount));
 552 }
 553 out.writeZeroes(one.getFileOffset() - out.getCursor());
 554 one.writeTo(out);
 555 } catch (RuntimeException ex) {
 556 ExceptionWithContext ec;
 557 if (ex instanceof ExceptionWithContext) {
 558 ec = (ExceptionWithContext) ex;
 559 } else {
 560 ec = new ExceptionWithContext(ex);
 561 }
 562 ec.addContext("...while writing section " + i);
 563 throw ec;
 564 }
 565 }
 566
 567 if (out.getCursor() != fileSize) {
 568 throw new RuntimeException("foreshortened write");
 569 }
 570
 571 // Perform final bookkeeping.
 572
 573 calcSignature(barr);

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page8 of 21

pa-1455336 8 of 29 April 1, 2011

The ’702 Patent Infringed By
 574 calcChecksum(barr);
 575
 576 if (annotate) {
 577 wordData.writeIndexAnnotation(out, ItemType.TYPE_CODE_ITEM,
 578 "\nmethod code index:\n\n");
 579 getStatistics().writeAnnotation(out);
 580 out.finishAnnotating();
 581 }
 582
 583 return out;
 584 }
 585
 586 /**
 587 * Generates and returns statistics for all the items in the file.
 588 *
 589 * @return {@code non-null;} the statistics
 590 */
 591 public Statistics getStatistics() {
 592 Statistics stats = new Statistics();
 593
 594 for (Section s : sections) {
 595 stats.addAll(s);
 596 }
 597
 598 return stats;
 599 }
 600
 601 /**
 602 * Calculates the signature for the {@code .dex} file in the
 603 * given array, and modify the array to contain it.
 604 *
 605 * @param bytes {@code non-null;} the bytes of the file
 606 */
 607 private static void calcSignature(byte[] bytes) {
 608 MessageDigest md;
 609
 610 try {
 611 md = MessageDigest.getInstance("SHA-1");
 612 } catch (NoSuchAlgorithmException ex) {
 613 throw new RuntimeException(ex);
 614 }
 615
 616 md.update(bytes, 32, bytes.length - 32);
 617

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page9 of 21

pa-1455336 9 of 29 April 1, 2011

The ’702 Patent Infringed By
 618 try {
 619 int amt = md.digest(bytes, 12, 20);
 620 if (amt != 20) {
 621 throw new RuntimeException("unexpected digest write: " + amt +
 622 " bytes");
 623 }
 624 } catch (DigestException ex) {
 625 throw new RuntimeException(ex);
 626 }
 627 }
 628
 629 /**
 630 * Calculates the checksum for the {@code .dex} file in the
 631 * given array, and modify the array to contain it.
 632 *
 633 * @param bytes {@code non-null;} the bytes of the file
 634 */
 635 private static void calcChecksum(byte[] bytes) {
 636 Adler32 a32 = new Adler32();
 637
 638 a32.update(bytes, 12, bytes.length - 12);
 639
 640 int sum = (int) a32.getValue();
 641
 642 bytes[8] = (byte) sum;
 643 bytes[9] = (byte) (sum >> 8);
 644 bytes[10] = (byte) (sum >> 16);
 645 bytes[11] = (byte) (sum >> 24);
 646 }
 647 }

dalvik/dx/src/com/android/dx/dex/file/DexFile.java.

See also:

dalvik/dx/src/com/android/dx/dex/file/TypeIdsSection.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdItem.java
dalvik/dx/src/com/android/dx/cf/cst/ConstantPoolParser.java

forming a shared table comprising
said plurality of duplicated

The Android dx tool forms a shared table of the duplicated elements from the plurality of
class files. This process is explained in the Dalvik Video at time 7:20–9:25 and Dalvik

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page10 of 21

pa-1455336 10 of 29 April 1, 2011

The ’702 Patent Infringed By
elements; Presentation, slides 15-20, where the recited shared table includes, e.g., one or more of the

“string_ids constant pool,” “type_ids constant pool,” “proto_ids constant pool,” “field_ids
constant pool,” and “method_ids constant pool.”

The Dalvik Presentation shows the elements of the class files combining into a shared
constant pool (shared tables) in the .dex file.

(Dalvik Presentation, slide 15)

In the illustration above, each of “string_ids,” “type_ids” and “method_ids” are examples of
the shared tables (or, equivalently, a collective shared table).

In addition, the discussion of the “Shared Constant Pool” in the Dalvik Video explains that
the duplicated elements in the class files are consolidated into the shared constant pool
(shared table) of the .dex file. See Dalvik Presentation, slides 15-21.

For example, slide 19 of the Dalvik Presentation shows the separate class files having

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page11 of 21

pa-1455336 11 of 29 April 1, 2011

The ’702 Patent Infringed By
duplicated elements.

(Dalvik Presentation, slide 19)

Next, slide 20 of the Dalvik Presentation shows a representation of the class files after being
processed into a single .dex file, with the duplicate elements removed; the elements are then
stored in a shared constant pool (shared table):

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page12 of 21

pa-1455336 12 of 29 April 1, 2011

The ’702 Patent Infringed By

(Dalvik Presentation, slide 20)

In the Android source code, see also generally:

“Interfaces and implementation of things related to the constant pool.
PACKAGES USED:
 * com.android.dx.rop.type

* com.android.dx.util”

dalvik/dx/src/com/android/dx/rop/cst/package.html.

See also:

dalvik/dx/src/com/android/dx/dex/file/DexFile.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdsSection.java

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page13 of 21

pa-1455336 13 of 29 April 1, 2011

The ’702 Patent Infringed By
dalvik/dx/src/com/android/dx/dex/file/TypeIdItem.java
dalvik/dx/src/com/android/dx/cf/cst/ConstantPoolParser.java

removing said duplicated elements
from said plurality of class files to
obtain a plurality of reduced class
files; and

The Android dx tool removes the duplicated elements from the plurality of class files (e.g., as
part of the process of forming the .dex file) and obtains a plurality of reduced class files (the
reduced class files including a subset of the code and data contained in the class files). This
process, and contents of the reduced class file, is clearly explained and illustrated in the
Dalvik Video at time 7:20–9:25 and Dalvik Presentation, slides 15-20.

The Dalvik Presentation shows the class files combining into a shared constant pool (shared
table) in the .dex file, whereby duplicated elements are removed from the class files when
using a subset of the code and data contained in the class files, i.e., the reduced class files, to
form the .dex file.

(Dalvik Presentation, slide 15)

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page14 of 21

pa-1455336 14 of 29 April 1, 2011

The ’702 Patent Infringed By
The original class files are combined into a single .dex file, which includes a plurality of
reduced class files (i.e., a subset of code and data of the class files, with duplicates removed).
This is also illustrated in slide 11 of the Dalvik presentation, which shows the anatomy of a
.dex file:

(Dalvik Presentation, slide 11)

Next, slides 18-20 of the Dalvik Presentation show the removal of the duplicated elements of
the plurality of class files such that the resulting .dex file contains only one copy of each
element in its shared constant pool (shared table).

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page15 of 21

pa-1455336 15 of 29 April 1, 2011

The ’702 Patent Infringed By

(Dalvik Presentation, slide 18)

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page16 of 21

pa-1455336 16 of 29 April 1, 2011

The ’702 Patent Infringed By

(Dalvik Presentation, slide 19)

(Dalvik Presentation, slide 20)

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page17 of 21

pa-1455336 17 of 29 April 1, 2011

The ’702 Patent Infringed By

In the Android source code, see also generally:

“Interfaces and implementation of things related to the constant pool.
PACKAGES USED:
 * com.android.dx.rop.type

* com.android.dx.util”

dalvik/dx/src/com/android/dx/rop/cst/package.html.

See also:

dalvik/dx/src/com/android/dx/dex/file/DexFile.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdsSection.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdItem.java
dalvik/dx/src/com/android/dx/cf/cst/ConstantPoolParser.java

forming a multi-class file
comprising said plurality of reduced
class files and said shared table.

As explained above, the Android dx tool forms a multi-class file—the .dex file—comprising
the reduced class files and a shared constant pool (shared table) such that duplicate elements
have been removed. This process is explained in the Dalvik Video at time 7:20–9:25 and
Dalvik Presentation, slides 11 and 15-20. The reduced class files include a subset of the code
and data of the original class files, e.g., “class_defs” and “data” illustrated in slide 11 and the
“other data” illustrated in slide 15, and the recited shared table includes, e.g., one or more of
the “string_ids constant pool,” “type_ids constant pool,” “proto_ids constant pool,” “field_ids
constant pool,” and “method_ids constant pool.”

The Dalvik Presentation shows the original class files being combined into a .dex file (multi-
class file) comprising the plurality of reduced class files and the shared constant pool (shared
table):

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page18 of 21

pa-1455336 18 of 29 April 1, 2011

The ’702 Patent Infringed By

(Dalvik Presentation, slide 15)

(Dalvik Presentation, slide 11)

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page19 of 21

pa-1455336 19 of 29 April 1, 2011

The ’702 Patent Infringed By

(Dalvik Presentation, slide 20)

In the Android source code, see generally:

“Classes for translating Java classfiles into Dalvik classes.
PACKAGES USED:
• com.android.dx.cf.code
• com.android.dx.cf.direct
• com.android.dx.cf.iface
• com.android.dx.dex.code
• com.android.dx.dex.file
• com.android.dx.rop.code
• com.android.dx.rop.cst
• com.android.dx.util”

dalvik\dx\src\com\android\dx\dex\cf\package.html.

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page20 of 21

pa-1455336 20 of 29 April 1, 2011

The ’702 Patent Infringed By
See also:

/**
 * Representation of an entire {@code .dex} (Dalvik EXecutable)
 * file, which itself consists of a set of Dalvik classes.
 */
public final class DexFile {
 /** {@code non-null;} word data section */
 private final MixedItemSection wordData;

dalvik\dx\src\com\android\dx\dex\file\DexFile.java.

See also:

dalvik/dx/src/com/android/dx/dex/file/DexFile.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdsSection.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdItem.java
dalvik/dx/src/com/android/dx/cf/cst/ConstantPoolParser.java

The ’702 Patent Infringed By
 5. The method of claim 1, wherein
said step of determining a plurality
of duplicated elements comprises:

See Claim 1, supra.

determining one or more constants
shared between two or more class
files.

The Android dx tool determines constants shared between two or more class files. This
process is explained in the Dalvik Video at time 7:20-9:25 and Dalvik Presentation, slides 11-
20.

The Dalvik Presentation shows the elements of the class files identified for combining into a
shared constant pool (shared tables) in the .dex file.

Case3:10-cv-03561-WHA Document436-2 Filed09/15/11 Page21 of 21

